1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex
3 years ago
15

Which statement is true about a planet’s orbital motion?

Physics
1 answer:
lana66690 [7]3 years ago
3 0

Answer:

Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.

Explanation:

The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.

When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.

The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.

The velocity of the orbit is given by the relation,

                                    V = \sqrt{\frac{GM}{R + h} }

Where

                   V - velocity of the orbit at a height h from the surface

                    R - Radius of the second object

                    G - Gravitational constant

                    h - height from the surface

The body will be in orbital motion when its kinetic motion is balanced by gravitational force.

                         1/2 mV^{2} = GMm/R

Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.

You might be interested in
A 15-turn circular wire loop with a radius of 3.0 cm is initially in a uniform magnetic field with a strength of 0.5 T. The fiel
lana66690 [7]

To solve this problem it is necessary to apply the definition given in Faraday's law in a solenoid for which it is noted that

\epsilon = - d\frac{\phi_B}{dt}

\epsilon = -NA\frac{dB}{dt}

Where,

N = Number of loops

A = Cross sectional Area

B = Magnetic Field

\epsilon = (15)(\pi(0.03)^2)\frac{0-0.5}{0.1}

\epsilon = 0.212V

\epsilon = 0.21V

Therefore the correct answer is A.

6 0
3 years ago
The mixture you separated was a mixture of iron filings, sand, and salt. Based on your understanding of matter, is this mixture
V125BC [204]

Answer: Heterogeneous mixture - the parts are not uniformly mixed.

A mixture contains components having distinct chemical properties. There are two types of mixtures: homogeneous and heterogeneous. In a homogeneous mixture there is uniform distribution of components. we cannot distinguish one portion of the mixture from another. for example salt mixed in water. In heterogeneous mixture, the components are not uniformly mixed. hence, we are able to distinguish different parts of a mixture, like the mixture of iron, sand and salt given in this question.

6 0
3 years ago
Read 2 more answers
2.5 gram sample of a radioactive element was formed in a 1960 explosion of an atomic bomb at Johnson Island in the Pacific Test
kow [346]

Answer:

0.15625 grams

Explanation:

Half life: It is related to the decay of radioactive material. The duration in which  half of the material will be degraded/decayed. That means after half life 50% of the radioactive material will be left. Here the half life is 28 years.

Initial quantity of the sample: 2.5 grams.

After 28 years, the leftover quantity = 1.25 grams

After 56 years, the leftover quantity = 0.625 grams

After 84 Years, the leftover quantity = 0.3125 grams

After 112 years, the leftover quantity = 0.15625 grams

5 0
3 years ago
Hooke’s law states that the distance that a spring is stretched by hanging object varies directly as the mass of the object. If
trasher [3.6K]

Answer:

d_{2} = 33.33 cm

Explanation:

Given:

When mass, m_{1} =21 kg

          distance travelled is  d_{1}  = 140 cm

When mass, m_{2} =5 kg

         distance travelled is  d_{2}  = ?

Hooke's law state that within elastic limit, when an external force is applied to a body, the body gets deformed and when the force is released the gets back to its original form.

Therefore according to the question,

\frac{d_{1}}{m_{1}}=\frac{d_{2}}{m_{2}}

\frac{140}{21}=\frac{d_{2}}{5}

d_{2} = 33.33 cm

Distance travelled is 33.33 cm when mass is 5 kg.

8 0
3 years ago
By what factor should the length of the pendulum of a clock be changed if you want it to run 2 times faster?
Semenov [28]
You have to decrease the length of the pendulum by 4 times in order to make the clock go 2 times faster
7 0
3 years ago
Read 2 more answers
Other questions:
  • In order for an object to sink, its density must ___________ 1g/ml.
    7·2 answers
  • What property is used to distinguish the layers of the atmosphere?
    10·2 answers
  • All the atoms of an element have the same number of which subatomic particles? Select one: a. protons b. electrons c. neutrons
    15·1 answer
  • 3. The nervous system works together to communicate with different parts of the body and with the external environment. Spinal c
    14·2 answers
  • Elements have the same number of ______ as you move from left to right
    15·2 answers
  • If u accomplished 10,000 newton meters of work how much work did you do in units of joules
    14·1 answer
  • A force of 10 N making an angle 30 with horizontal .its horizontal component wll be​
    10·1 answer
  • A turntable, with a mass of 1.5 kg and diameter of 20 cm, rotates at 70 rpm on frictionless bearings. Two 540 g blocks fall from
    7·1 answer
  • Plants are able to release water back into the atmosphere by a process called _____.
    9·1 answer
  • G a magnetic field perpendicular to the plane of a wire loop is uniform in space but changes with time t in the region of the lo
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!