Gravitational potential energy can be calculated using the formula:

Where:
PEgrav = Gravitational potential energy
m= mass
g = acceleration due to gravity
h = height
On Earth acceleration due to gravity is a constant 9.8 but since the scenario is on Mars, the pull of gravity is different. In this case, it is 3.7, so we will use that for g.
So put in what you know and solve for what you don't know.
m = 10kg
g = 3.7m/s^2
h = 1m
So we put that in and solve it.


<span>When the question says the ball lands a distance of 235 meters from the release point, we can assume this means the horizontal distance is 235 meters.
Let's calculate the time for the ball to fall 235 meters to the ground.
y = (1/2)gt^2
t^2 = 2y / g
t = sqrt{ 2y / g }
t = sqrt{ (2) (235 m) / (9.81 m/s^2) }
t = 6.9217 s
We can use the time t to find the horizontal speed.
v = d / t
v = 235 m / 6.9217 s
v = 33.95 m/s
Since the horizontal speed is the speed of the plane, the speed of the plane is 33.95 m/s</span>
Answer:
The use of renewable sources of energy help to solve the problem of energy crisis is discussed below in details.
Explanation:
Environmental and economic advantages of adopting renewable energy incorporate: Creating energy that originates no greenhouse gas discharges from fossil fuels and decreases some kinds of air pollution. Increasing energy stocks and decreasing dependency on shipped fuels.
Here are 5 actionable suggestions you can follow to make a decent utilization of renewable energy on your bases:
- Embrace Solar-Powered Technologies.
- Crowdfund Clean Energy Projects.
- Establish the Society of Concerned Scientists.
Answer:
v= 17.15 m/s
Explanation:
mass of the book=0.1 Kg
height above ground, h= 15 m
Using conservation of energy
Potential energy is converted into kinetic energy




v= 17.15 m/s
Hence, the book will hit the ground at the speed of 17.15 m/s.