15 is 3 times 5. The point (5, 0) is dilated to the point (15, 0) by using a factor of
K = 3.
Domain: 1 2 3 4 5 6 range: -1 0 1 2 3 6
The surface 5 cm, and the length is 10 cm
<span>N(t) = 16t ; Distance north of spot at time t for the liner.
W(t) = 14(t-1); Distance west of spot at time t for the tanker.
d(t) = sqrt(N(t)^2 + W(t)^2) ; Distance between both ships at time t.
Let's create a function to express the distance north of the spot that the luxury liner is at time t. We will use the value t as representing "the number of hours since 2 p.m." Since the liner was there at exactly 2 p.m. and is traveling 16 kph, the function is
N(t) = 16t
Now let's create the same function for how far west the tanker is from the spot. Since the tanker was there at 3 p.m. (t = 1 by the definition above), the function is slightly more complicated, and is
W(t) = 14(t-1)
The distance between the 2 ships is easy. Just use the pythagorean theorem. So
d(t) = sqrt(N(t)^2 + W(t)^2)
If you want the function for d() to be expanded, just substitute the other functions, so
d(t) = sqrt((16t)^2 + (14(t-1))^2)
d(t) = sqrt(256t^2 + (14t-14)^2)
d(t) = sqrt(256t^2 + (196t^2 - 392t + 196) )
d(t) = sqrt(452t^2 - 392t + 196)</span>
Answer:
2. 10
3. D. 1 for all n
Step-by-step explanation:
2. The applicable rules of exponents are ...
(a^b)(a^c) = a^(b+c)
a^b = 1/a^-b
__

The value of n is 10.
__
3. Using the above rules of exponents, the expression simplifies to ...
6^(-n+n) = 6^0 = 1
The value is 1 for any n.