Answer:
1) ∫ x² e^(x) dx
4) ∫ x cos(x) dx
Step-by-step explanation:
To solve this problem, eliminate the choices that can be solved by substitution.
In the second problem, we can say u = x², and du = 2x dx.
∫ x cos(x²) dx = ∫ ½ cos(u) du
In the third problem, we can say u = x², and du = 2x dx.
∫ x e^(x²) dx = ∫ ½ e^(u) du
Answer:
5(-2w)-(5x4)
Step-by-step explanation:
<span>A 96% confidence interval means that 96% of the time you can believe that the result will fall into a range of numbers. In the case of weight lifting this would mean that 96% of the time, the proportion of weight-lifting injuries were accidental would fall in between the two parameters set forth.</span>
Answer:
The whole number dimension that would allow the student to maximize the volume while keeping the surface area at most 160 square is 6 ft
Step-by-step explanation:
Here we are required find the size of the sides of a dunk tank (cube with open top) such that the surface area is ≤ 160 ft²
For maximum volume, the side length, s of the cube must all be equal ;
Therefore area of one side = s²
Number of sides in a cube with top open = 5 sides
Area of surface = 5 × s² = 180
Therefore s² = 180/5 = 36
s² = 36
s = √36 = 6 ft
Therefore, the whole number dimension that would allow the student to maximize the volume while keeping the surface area at most 160 square = 6 ft.
No the solution should only be X=1