Hardy-Weinberg Equation (HW) states that following certain biological tenets or requirements, the total frequency of all homozygous dominant alleles (p) and the total frequency of all homozygous recessive alleles (q) for a gene, account for the total # of alleles for that gene in that HW population, which is 100% or 1.00 as a decimel. So in short: p + q = 1, and additionally (p+q)^2 = 1^2, or 1
So (p+q)(p+q) algebraically works out to p^2 + 2pq + q^2 = 1, where p^2 = genotype frequency of homozygous dominant individuals, 2pq = genotype frequency of heterozygous individuals, and q^2 = genotype frequency of homozygous recessive individuals.
The problem states that Ptotal = 150 individuals, H frequency (p) = 0.2, and h frequency (q) = 0.8.
So homozygous dominant individuals (HH) = p^2 = (0.2)^2 = 0.04 or 4% of 150 --> 6 people
Heterozygous individuals (Hh) = 2pq = 2(0.2)(0.8) = 0.32 or 32% of 150
--> 48 people
And homozygous recessive individuals (hh) = q^2 = (0.8)^2 = 0.64 = 64% of 150 --> 96 people
Hope that helps you to understand how to solve these types of population genetics problems!
Answer:
Aneuploidy
Explanation:
Aneuploidy is the presence of abnormal normal of chromosomes in a cell. Example: The chromosomes number 45 or 47 chromosomes which is not common in case of human beings.
The normal number of chromosomes in human beings is 46. This results in different syndromes which can cause deformities in the body of the individual.
It leads to miscarriage in most of the cases the survival is very less.
"The mouth" is the correct answer
H2O is acquired by osmosis in the plants cells, and or through the stomata. CO2 is obtained in the way of the Stomata.