Answer:
Internally in the female
Explanation:
internally in the female because that's where the sperm meets the egg
Answer:
0.7
Explanation:
Using Hardy-Weinberg equation of genetic variation being constant when disturbing factors such has mutation and others are removed.
p² + pq + q² = 1 and p + q = 1
where p² is the frequency of the homozygous dominant genotype (RR) and q² is the frequency of the homozygous recessive genotype (rr) and 2pq is the frequency of heterozygous genotype (Rr). p represent the frequency of "R" and q represent "g". since the coefficient against the green/green homozygote is 0.30 then
the fitness of the green/green homozygote = 1 - 0.3 = 0.7
It has a charge shift, which basically means, since there are 2 charges, that it'll filp it's charge:
- If the atom had a positive charge, it'll become negative
- If the atom had a negative charge, it'll become positive
Hope it helped,
BioTeacher101
Answer: NSF International
Explanation:
The answers would be:
Genotype Phenotype
Tt Tall stemmed
tt Short stemmed
Genotypic ratio : 2:2 or 1:1
Phenotypic ratio: 2:2 or 1:1
<u />
<u>You can read on to see how this was done:</u>
Tall stems (T) are dominant to short stems (t).
First figure out the genotypes of the parents. We have a short-stemmed plant and a heterozygous long-stemmed plant cross.
For short stem to occur, you need 2 pairs of short alleles. So the first parent would have a genotype of tt.
Heterozygous long-stemmed means that the parent has one of each allele. So the genotype of the second parent would be, Tt.
Now we can make our Punnett Square.
tt x Tt
<u> t t </u>
<u>T | Tt | Tt</u>
<u>t | tt | tt</u>
Let's list down the genotypes and phenotypic results.
Genotype no. Phenotype
Tt 2 Tall stemmed
tt 2 Short stemmed
So from that we can answer the other questions:
Genotypic ratio : 2:2 or 1:1
Phenotypic ratio: 2:2 or 1:1