Answer:
Zn(s) → Zn⁺²(aq) + 2e⁻
Explanation:
Let us consider the complete redox reaction:
Zn(s) + 2HCl(aq) → ZnCl₂(aq) + H₂(g)
This is a redox reaction because, both oxidation and reduction is simultaneously taking place.
- Oxidation (loss of electrons or increase in the oxidation state of entity)
- Reduction (gain of electrons or decrease in the oxidation state of the entity)
- An element undergoes oxidation or reduction in order to achieve a stable configuration. It can be an octet configuration. An octet configuration is that of outer shell configuration of noble gas.
Here Zn(s) is undergoing oxidation from OS 0 to +2
And H in HCl (aq) is undergoing reduction from OS +1 to 0.
Therefore, for this reaction;
Oxidation Half equation is:
Zn(s) → Zn⁺²(aq) + 2e⁻
Reduction Half equation is:
2H⁺ + 2e⁻ → H₂(g)
Explanation:
Bond order is inversely proportional to the bond length.

In
molecule. one nitrogen is double bonded to nitrogen and one oxygen is single bonded to nitrogen and hydrogen bond.
- Bond order between the (N=O) bond is 2 which means that bond length between the (N=O) bond is shorter than that of the N-O bond.
- Bond order between the (N-O) bond is 1 which means that bond length of the N-O bond is longer than that of the bond length of (N=O) bond.
<span>In a solid the atoms are tightly packed together and vibrate in place, in a liquid the atoms are loosely packed together and can move past each other,
extra: and in a gas the atoms are far apart and move freely and </span><em>
</em><em>
</em>
Answer:
(a) The lewis structure for methylisocyanate is in the attached.
(b) The carbonyl carbon have an sp² hybridization
(c) The nitrogen have an sp² hybridization?
Explanation:
(a) The lewis structure for methylisocyanate has the nitrogen with one lone pair and the oxygen with two lone pairs.
(b) The carbonyl carbon form double bond with the oxygen causing to form three hybrid orbitals sp².
The Nitrogen also forms a double bond with the carbon having an sp² hybridization too.