Answer: 2 SO2 (g) + O2 (g) Kp = 7.69 If a vessel at this temperature initially ... and if the partial pressure of sulfur trioxide at equilibrium is 0.100 atm,
Explanation:
<span>The solid lines between N and Mg are actually ionic bonds. N has 5 valence electrons (2 of which are paired). Of the 3 that are unpaired, 2 are part of covalent bonds with adjacent carbon atoms. N accepts an extra electron to complete its octet, but gets a formal charge of -1. This allows for formation of an ionic bond with Mg, which is +2. Two of these charged N atoms therefore neutralize the charge of the central Mg. As for the coordinate (dative) covalent bonds, Mg has empty orbitals - the ionic bonds with the charged N atoms give it only 4/8 possible valence electrons.
The other two N atoms (dotted lines) have a formal charge of 0 since they form three covalent bonds with adjacent carbon atoms, but they still have a lone pair. Therefore, just to improve stability, each of these N atoms can "donate" its lone pair to Mg in order to complete its octet.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
hypochlorite ion
Explanation:
The hypochlorous acid, HClO, is a weak acid with Ka = 1.36x10⁻³, when this acid is in solution with its conjugate base, ClO⁻ (From sodium hypochlorite, NaClO) a buffer is produced. When a strong acid as HCl is added, the reaction that occurs is:
HCl + ClO⁻ → HClO + Cl⁻.
Where more hypochlorous acid is produced.
That means, the HCl reacts with the hypochlorite ion present in solution
I think that different liquids have different freezing points because every liquid consists of different atoms and different things that make up the atom causing them to have different freezing points.
Answer:
1. d[H₂O₂]/dt = -6.6 × 10⁻³ mol·L⁻¹s⁻¹; d[H₂O]/dt = 6.6 × 10⁻³ mol·L⁻¹s⁻¹
2. 0.58 mol
Explanation:
1.Given ΔO₂/Δt…
2H₂O₂ ⟶ 2H₂O + O₂
-½d[H₂O₂]/dt = +½d[H₂O]/dt = d[O₂]/dt
d[H₂O₂]/dt = -2d[O₂]/dt = -2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = -6.6 × 10⁻³mol·L⁻¹s⁻¹
d[H₂O]/dt = 2d[O₂]/dt = 2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = 6.6 × 10⁻³mol·L⁻¹s⁻¹
2. Moles of O₂
(a) Initial moles of H₂O₂

(b) Final moles of H₂O₂
The concentration of H₂O₂ has dropped to 0.22 mol·L⁻¹.

(c) Moles of H₂O₂ reacted
Moles reacted = 1.5 mol - 0.33 mol = 1.17 mol
(d) Moles of O₂ formed
