Answer:
the reducing flame also called the carburizing flame.
Explanation:
because it gets the oxides of the unknown salts
I think its <span>C. removing a hydrogen from the amino group.</span>
I believe the correct answer from the choices listed above is option B. A solution can be classified as a mixture since b<span>oth are made up of two substances that are not chemically combined. More specifically, it is referred to as an homogeneous mixture. Hope this helps.</span>
Answer:
The equilibrium concentration of hydrogen gas is 0.0010 M.
Explanation:
The equilibrium constant of the reaction =
}
Moles of hydrogen sulfide = 0.31 mol
Volume of the container = 4.1 L
![[concentration]=\frac{moles}{volume (L)}](https://tex.z-dn.net/?f=%5Bconcentration%5D%3D%5Cfrac%7Bmoles%7D%7Bvolume%20%28L%29%7D)
![[H_2S]=\frac{0.31 mol}{4.1 L}=0.076 M](https://tex.z-dn.net/?f=%5BH_2S%5D%3D%5Cfrac%7B0.31%20mol%7D%7B4.1%20L%7D%3D0.076%20M)

Initially
0.076 M
At equilibrium
(0.076-2x) 2x x
The expression of an equilibrium constant :
![K_c=\frac{[H_2]^2[S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5E2%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)

Solving for x:
x = 0.00051
The equilibrium concentration of hydrogen gas:
![[H_2]=2x=2\times 0.00051 M=0.0010 M](https://tex.z-dn.net/?f=%5BH_2%5D%3D2x%3D2%5Ctimes%200.00051%20M%3D0.0010%20M)