Answer:
y = -1/2x + 2
Step-by-step explanation:
y = 2x - 3. The slope here is 2. A perpendicular line will have a negative reciprocal slope. To find the negative reciprocal, just flip the slope and change the sign.
slope = 2 or 2/1.....flip it.....1/2....change the sign...-1/2. So our perpendicular line will have a slope of -1/2.
y = mx + b
slope(m) = - 1/2
(2,1)....x = 2 and y = 1
now we sub and find b, the y intercept
1 = -1/2(2) + b
1 = -1 + b
1 + 1 = b
2 = b
so ur equation is : y = -1/2x + 2 <===
and u can check it with ur points....(2,1)
y = 2x - 3
1 = 2(2) - 3
1 = 4 - 3
1 = 1 (yep...it checks out)
Hi Jessica,
<span>Remember PEMDAS (Parenthesis, Exponents, Multiplication & Division, Addition & Subtraction).
√3 x 66.15/4.41 {Exponents/Cube & Square Roots First}
1.73 x 66.15 ÷ 4.41 {Multiplication}
114.4395 ÷ 4.41 {Division}
25.95 {Final Answer}
Cheers,
Izzy</span>
Answer:
(i) (f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = x³ + 4·x² + 5·x + 2
Step-by-step explanation:
The given functions are;
f(x) = x² + 3·x + 2
g(x) = x + 1
(i) (f - g)(x) = f(x) - g(x)
∴ (f - g)(x) = x² + 3·x + 2 - (x + 1) = x² + 3·x + 2 - x - 1 = x² + 2·x + 1
(f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = f(x) + g(x)
∴ (f + g)(x) = x² + 3·x + 2 + (x + 1) = x² + 3·x + 2 + x + 1 = x² + 4·x + 3
(f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = f(x) × g(x)
∴ (f·g)(x) = (x² + 3·x + 2) × (x + 1) = x³ + 3·x² + 2·x + x² + 3·x + 2 = x³ + 4·x² + 5·x + 2
(f·g)(x) = x³ + 4·x² + 5·x + 2