Answer:
t = 0.05 / 0.017
Step-by-step explanation:
Given the table :
Variable ____ Estimate
Intercept 1 ____ 15.5 ____2.96
Temp 1 _______0.05 ___ 0.017
R-sq = 0.73
The test statistic for a regression test :
t = b1 / E
Where ;
b1 = slope ; E = Standard error of the slope
From the result table ;
b1 = 0.05 ;
E = 0.017
The test statistic, t = 0.05 / 0.017
1. 41
2. 50
3. 10
4. 75
5. i’m not really sure
True. Is the answer because how else will the goverment get money for their tooperate.
So, you take the equation for y given, y=0.28x+5.92. Then you substitute the values for x in, like so:
y=0.28(2)+5.92=6.42
y=0.28(5)+5.92=7.17
y=0.28(8)+5.92=7.92
So There's your table. Next:
7.88=0.28x+5.92
x=7, so the year when admission was approximately $7.88 is year 7.
Next,
10.04=0.28x+5.92
x=<span>14.7142857143, which rounds to year 15.
I hope this helps!</span>
Answer:
Area: 16
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Calculus</u>
Derivatives
Derivative Notation
Integrals - Area under the curve
Trig Integration
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]:
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
U-Substitution
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />

Bounds of Integration: 0 ≤ x ≤ π
<u>Step 2: Find Area Pt. 1</u>
- Set up integral:
![\displaystyle A = \int\limits^{\pi}_0 {[8sin(x) + sin(8x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5B8sin%28x%29%20%2B%20sin%288x%29%5D%7D%20%5C%2C%20dx)
- Rewrite integral [Integration Property - Addition/Subtraction]:

- [1st Integral] Rewrite [Integration Property - Multiplied Constant]:

- [1st Integral] Integrate [Trig Integration]:
![\displaystyle A = 8[-cos(x)] \bigg| \limits^{\pi}_0 + \int\limits^{\pi}_0 {sin(8x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%208%5B-cos%28x%29%5D%20%5Cbigg%7C%20%5Climits%5E%7B%5Cpi%7D_0%20%2B%20%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7Bsin%288x%29%7D%20%5C%2C%20dx)
- [1st Integral] Evaluate [Integration Rule - FTC 1]:

- Multiply:

<u>Step 3: Identify Variables</u>
<em>Identify variables for u-substitution.</em>
u = 8x
du = 8dx
<u>Step 4: Find Area Pt. 2</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] U-Substitution:

- [Integral] Integrate [Trig Integration]:
![\displaystyle A = 16 + \frac{1}{8}[-cos(u)] \bigg| \limits^{8\pi}_0](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%2016%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5B-cos%28u%29%5D%20%5Cbigg%7C%20%5Climits%5E%7B8%5Cpi%7D_0)
- [Integral] Evaluate [Integration Rule - FTC 1]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Integration - Area under the curve
Book: College Calculus 10e