Answer:
I don't know
Step-by-step explanation:
I'm sorry
Answer:
x ≤ -11.25 or x > -8.75
Step-by-step explanation:
The graph here shows a disjunction compound inequality, in which either of the statements is true. That is for the compound inequality to be true, either one or the other statement is true. The word "OR" is used in stating this inequality.
On the graph, the directed line to our left has a full circle which starts at -11.25.
This means x ≤ -11.25.
The other directed line to our right has an empty circle, and starts at -8.75.
This means x > -8.75.
✅The compound inequality representing the graph will be written as:
x ≤ -11.25 or x > -8.75
1)
![(-2+\sqrt{-5})^2\implies (-2+\sqrt{-1\cdot 5})^2\implies (-2+\sqrt{-1}\sqrt{5})^2\implies (-2+i\sqrt{5})^2 \\\\\\ (-2+i\sqrt{5})(-2+i\sqrt{5})\implies +4-2i\sqrt{5}-2i\sqrt{5}+(i\sqrt{5})^2 \\\\\\ 4-4i\sqrt{5}+[i^2(\sqrt{5})^2]\implies 4-4i\sqrt{5}+[-1\cdot 5] \\\\\\ 4-4i\sqrt{5}-5\implies -1-4i\sqrt{5}](https://tex.z-dn.net/?f=%28-2%2B%5Csqrt%7B-5%7D%29%5E2%5Cimplies%20%28-2%2B%5Csqrt%7B-1%5Ccdot%205%7D%29%5E2%5Cimplies%20%28-2%2B%5Csqrt%7B-1%7D%5Csqrt%7B5%7D%29%5E2%5Cimplies%20%28-2%2Bi%5Csqrt%7B5%7D%29%5E2%20%5C%5C%5C%5C%5C%5C%20%28-2%2Bi%5Csqrt%7B5%7D%29%28-2%2Bi%5Csqrt%7B5%7D%29%5Cimplies%20%2B4-2i%5Csqrt%7B5%7D-2i%5Csqrt%7B5%7D%2B%28i%5Csqrt%7B5%7D%29%5E2%20%5C%5C%5C%5C%5C%5C%204-4i%5Csqrt%7B5%7D%2B%5Bi%5E2%28%5Csqrt%7B5%7D%29%5E2%5D%5Cimplies%204-4i%5Csqrt%7B5%7D%2B%5B-1%5Ccdot%205%5D%20%5C%5C%5C%5C%5C%5C%204-4i%5Csqrt%7B5%7D-5%5Cimplies%20-1-4i%5Csqrt%7B5%7D)
3)
let's recall that the conjugate of any pair a + b is simply the same pair with a different sign, namely a - b and the reverse is also true, let's also recall that i² = -1.
![\cfrac{6-7i}{1-2i}\implies \stackrel{\textit{multiplying both sides by the denominator's conjugate}}{\cfrac{6-7i}{1-2i}\cdot \cfrac{1+2i}{1+2i}\implies \cfrac{(6-7i)(1+2i)}{\underset{\textit{difference of squares}}{(1-2i)(1+2i)}}} \\\\\\ \cfrac{(6-7i)(1+2i)}{1^2-(2i)^2}\implies \cfrac{6-12i-7i-14i^2}{1-(2^2i^2)}\implies \cfrac{6-19i-14(-1)}{1-[4(-1)]} \\\\\\ \cfrac{6-19i+14}{1-(-4)}\implies \cfrac{20-19i}{1+4}\implies \cfrac{20-19i}{5}\implies \cfrac{20}{5}-\cfrac{19i}{5}\implies 4-\cfrac{19i}{5}](https://tex.z-dn.net/?f=%5Ccfrac%7B6-7i%7D%7B1-2i%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20the%20denominator%27s%20conjugate%7D%7D%7B%5Ccfrac%7B6-7i%7D%7B1-2i%7D%5Ccdot%20%5Ccfrac%7B1%2B2i%7D%7B1%2B2i%7D%5Cimplies%20%5Ccfrac%7B%286-7i%29%281%2B2i%29%7D%7B%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%281-2i%29%281%2B2i%29%7D%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B%286-7i%29%281%2B2i%29%7D%7B1%5E2-%282i%29%5E2%7D%5Cimplies%20%5Ccfrac%7B6-12i-7i-14i%5E2%7D%7B1-%282%5E2i%5E2%29%7D%5Cimplies%20%5Ccfrac%7B6-19i-14%28-1%29%7D%7B1-%5B4%28-1%29%5D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B6-19i%2B14%7D%7B1-%28-4%29%7D%5Cimplies%20%5Ccfrac%7B20-19i%7D%7B1%2B4%7D%5Cimplies%20%5Ccfrac%7B20-19i%7D%7B5%7D%5Cimplies%20%5Ccfrac%7B20%7D%7B5%7D-%5Ccfrac%7B19i%7D%7B5%7D%5Cimplies%204-%5Ccfrac%7B19i%7D%7B5%7D)
Answer:
3pi is irrational.
Step-by-step explanation:
An irrational number multiplied by a rational number is always irrational.
:)