1. If the product of these integers is to be 1, then all of them must be either 1 or -1.
2. Since the product is positive (+1), it must be that there are an *even* number of negative ones (-1), if any.
3. If the sum were 0 it would mean that the number of +1's must equal the number of -1's. So that means there would have to be exactly 22/2=11 of each.
4. But if there were 11 of each, that means the number of -1's would be *odd* and there's no way the product could be +1 (as stated in 2 above).
Hence, the sum is never 0, if the product of 22 integers is equal +1.
Answer:
tan(2u)=[4sqrt(21)]/[17]
Step-by-step explanation:
Let u=arcsin(0.4)
tan(2u)=sin(2u)/cos(2u)
tan(2u)=[2sin(u)cos(u)]/[cos^2(u)-sin^2(u)]
If u=arcsin(0.4), then sin(u)=0.4
By the Pythagorean Identity, cos^2(u)+sin^2(u)=1, we have cos^2(u)=1-sin^2(u)=1-(0.4)^2=1-0.16=0.84.
This also implies cos(u)=sqrt(0.84) since cosine is positive.
Plug in values:
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.84-0.16]
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.68]
tan(2u)=[(0.4)(sqrt(0.84)]/[0.34]
tan(2u)=[(40)(sqrt(0.84)]/[34]
tan(2u)=[(20)(sqrt(0.84)]/[17]
Note:
0.84=0.04(21)
So the principal square root of 0.04 is 0.2
Sqrt(0.84)=0.2sqrt(21).
tan(2u)=[(20)(0.2)(sqrt(21)]/[17]
tan(2u)=[(20)(2)sqrt(21)]/[170]
tan(2u)=[(2)(2)sqrt(21)]/[17]
tan(2u)=[4sqrt(21)]/[17]
Answer:
4400 is the answer
Step-by-step explanation: You move the decimal point to the right 3 spaces. If it was 10^-3 you would move the decimal point to the left 3 spaces.
Answer:
Multiply 2/25 by 4 to get 8/100 which can be turned into 8%
Step-by-step explanation: