Answer is <span> 4(4 + 9) (first choice)
----------------------------</span>
Answer:
2a) -2
b) 8
Step-by-step explanation:
<u>Equation of a parabola in vertex form</u>
f(x) = a(x - h)² + k
where (h, k) is the vertex and the axis of symmetry is x = h
2 a)
Using the equation of a parabola in vertex form, a parabola with vertex (2, -6):
f(x) = a(x - 2)² - 6
If one of the x-axis intercepts is 6, then
f(6) = 0
⇒ a(6 - 2)² - 6 = 0
⇒ 16a - 6 = 0
⇒ 16a = 6
⇒ a = 6/16 = 3/8
So f(x) = 3/8(x - 2)² - 6
To find the other intercept, set f(x) = 0 and solve for x:
f(x) = 0
⇒ 3/8(x - 2)² - 6 = 0
⇒ 3/8(x - 2)² = 6
⇒ (x - 2)² = 16
⇒ x - 2 = ±4
⇒ x = 6, -2
Therefore, the other x-axis intercept is -2
b)
Using the equation of a parabola in vertex form, a parabola with vertex (2, -6):
f(x) = a(x - 2)² - 6
If one of the x-axis intercepts is -4, then
f(-4) = 0
⇒ a(-4 - 2)² - 6 = 0
⇒ 36a - 6 = 0
⇒ 36a = 6
⇒ a = 6/36 = 1/6
So f(x) = 1/6(x - 2)² - 6
To find the other intercept, set f(x) = 0 and solve for x:
f(x) = 0
⇒ 1/6(x - 2)² - 6 = 0
⇒ 1/6(x - 2)² = 6
⇒ (x - 2)² = 36
⇒ x - 2 = ±6
⇒ x = 8, -4
Therefore, the other x-axis intercept is 8
Answer:
see below
Step-by-step explanation:
a. Has a slope of 2 and passes through (10,17)
Using the slope intercept form
y = mx+b where m is the slope and b is the y intercept
y = 2x+b
Substitute the point into the equation
17 = 2(10)+b
17 = 20+b
Subtract 20 from each side
17-20 =b
-3 =b
y = 2x-3
b. passes through (1,-4) and (2,-5)
First find the slope
m= (y2-y1)/(x2-x1)
= (-5- -4)/(2-1)
= (-5+4)/(2-1)
= -1/1
= -1
Using the slope intercept form
y = -x+b
Substitute a point into the equation
-4 = -1(1) +b
-4 = -1+b
Add 1 to each side
-3 = b
y = -x+3
Answer:
kYL E DID WHAT
Step-by-step explanation:
Answer:
(x-y) (a+x-y)
Step-by-step explanation:
(y-x)=-(x-y)
-a(y-x) = a(x-y)
(x-y)^2 = (x-y)(x-y)
(x-y)(a + x - y)