Apply the famous einteins equation....E=mc^2
Let's say say there are n1 mols of helium in the first balloon and n2 mols of nitrogen in the second one, which are equivalent to m1 grams of helium and m2 grams of nitrogen.
The molar mass of hydrogen is thus M1=m1/n1, same for nitrogen M2=m2/n2 hence the ratio of their masses is m1/m2=(M1n1)/(M2n2). Since both gases are rather similar, we can assume that n1~n2 hence m1/m2=M1/M2
The tool or instrument which is used to measure an object’s mass is electronic balance
Mass is a fundamental quantity
<h3>What is fundamental quantities?</h3>
Fundamental quantities can be defined as those physical quantities which forms the basic unit of measurement. They are the quantities upon which other quantities and units are derived from.
Mass is measured in kilograms (kg)
Other examples of fundamental quantities apart from mass are as follows:
- Length
- Time
- Amount of substances
- Luminous intensity
- Temperature
- Magnetic flux
So therefore, the tool or instrument which is used to measure an object’s mass is electronic balance
Learn more about fundamental/physical quantities:
brainly.com/question/23036403
#SPJ1
Answer:
The pressure inside the container would increase with each additional pump.
Explanation:
- From the general gas law of ideal gases:
<em>PV = nRT,</em>
where, P is the pressure of the gas.
V is the volume of the gas.
n is the no. of moles of the gas.
R is the general gas constant.
T is the temperature of the gas.
- As clear from the gas law; the pressure of the gas is directly proportional to the no. of moles of the gas.
<em>P α n.</em>
- As gas particles are pumped into a rigid steel container, the no. of moles of the gas will increase.
So, the pressure of the gas will increase.
<em>Thus, the right choice is: The pressure inside the container would increase with each additional pump.</em>