The answer would be metal
To answer this problem, we use Hess' Law to calculate the overall enthalpy of the reactions. The goal is to add all the reactions such that the final reaction is C<span>5H12 (g) + 8O2 (g) → 5CO2 (g) + 6H2O (l) through cancellation adn multiplication. The first equation is multiplied by 5, the second one is multiplied by 6 and the third one is reversed. The final answer is -3538 J or -3.54 x10^3 kJ.</span>
Answer:
V = 22.42 L/mol
N₂ and H₂ Same molar Volume at STP
Explanation:
Data Given:
molar volume of N₂ at STP = 22.42 L/mol
Calculation of molar volume of N₂ at STP = ?
Comparison of molar volume of H₂ and N₂ = ?
Solution:
Molar Volume of Gas:
The volume occupied by 1 mole of any gas at standard temperature and pressure and it is always equal to 22.42 L/ mol
Molar volume can be calculated by using ideal gas formula
PV = nRT
Rearrange the equation for Volume
V = nRT / P . . . . . . . . . (1)
where
P = pressure
V = Volume
T= Temperature
n = Number of moles
R = ideal gas constant
Standard values
P = 1 atm
T = 273 K
n = 1 mole
R = 0.08206 L.atm / mol. K
Now put the value in formula (1) to calculate volume for 1 mole of N₂
V = 1 x 273 K x 0.08206 L.atm / mol. K / 1 atm
V = 22.42 L/mol
Now if we look for the above calculation it will be the same for H₂ or any gas. so if we compare the molar volume of 1 mole N₂ and H₂ it will be the same at STP.
Answer: Anna stated that ionic compounds have high melting point and low boiling point. The error in the statement is that ionic compound have low boiling point, instead ionic compounds have high boiling point, because in an ionic compound, the force of attraction working between two ions is very strong and hence the bonds present are very strong, and a lot of energy is needed to break them
Answer:
1. Nonmetals.
2. Likely to form anions (except the noble gases).
3. All of these
4. Easily reduced (except the noble gases).
Explanation:
Elements with high electronegativities are found towards the upper right corner of the Periodic Table. Thus, they have all the above properties.