I don’t understand the question be more specific or take a picture
Chemical reactions are basically divided into two major classes depending on whether the reaction lose energy or gain energy from the environment during the course of the reaction. The two classes of reaction are exothermic and endothermic reaction.
An exothermic reaction is a type of reaction in which the reaction system lose energy to the environment and thus, the energy content of the reactants is more than that of the product formed. Because of this, the enthapyl change of an exothermic reaction is always negative.
An endothermic reaction is a type of reaction in which the reaction system absorb energy from the environment. Thus, the energy contents of the products is always higher than that of the reactants and the enthapyl change of the reaction is always positive. During the course of the reaction, the reaction container is usually cold to the touch because energy is been absorbed from the environment.
The volume of a gas that is required yo react with 4.03 g mg at STP is 1856 ml
calculation/
- calculate the moles of Mg used
moles=mass/molar mass
moles of Mg is therefore=4.03 g/ 24.3 g/mol=0.1658 moles
- by use of mole ratio of Mg:O2 from the equation which is 2:1
the moles 02=0.1679 x1/20.0829 moles
- at STP 1 mole of a gas= 22.4 l
0.0895 moles=? L
- =0.0895 moles x22.4 l/ 1 mole=1.8570 L
into Ml = 1.8570 x1000=1856 ml approximately to 1860
Valence bond theory stating that a bond between two atoms is the strongest when the nuclei of the atoms are touching each other is true.
<h3>What is Valence bond theory?</h3>
This theory states that when two valence orbitals of two different atoms overlap on each other, the bond is usually strong.
The bond formed in this scenario is usually covalent which involves sharing of the valence electrons.
Read more about Valence bond theory here brainly.com/question/11625586
#SPJ1