Step-by-step explanation:
Domain of a rational function is everywhere except where we set vertical asymptotes. or removable discontinues
Here, we have

First, notice we have x in both the numerator and denomiator so we have a removable discounties at x.
Since, we don't want x to be 0,
We have a removable discontinuity at x=0
Now, we have

We don't want the denomiator be zero because we can't divide by zero.
so


So our domain is
All Real Numbers except-2 and 0.
The vertical asymptors is x=-2.
To find the horinzontal asymptote, notice how the numerator and denomator have the same degree. So this mean we will have a horinzontal asymptoe of
The leading coeffixent of the numerator/ the leading coefficent of the denomiator.
So that becomes

So we have a horinzontal asymptofe of 2
the answer is C.12.1 units
Answer:
132 degrees
Step-by-step explanation:
To solve this problem, you need to know a couple of rules
1) Inscribed angle theroem: when an angle is inscribed in a circle and touches the other end (as opposed to ending at the diameter of the circle), the measure of this angle is half of the measure of the arc.
2)Angles of a quadrilateral shape add up to 360 degrees.
3) The angles inside a circle and the angles of the circles arclength adds up to 360 degrees.
So first, solve angle S with inscribed angle theorem. 126/2 = 63
Then, use the rule that all arc angles in a circle add up to 360 degrees to find the arc angle from Q to S. 360-90-126 = 144. Now find angle P with inscribed angle theorem by doing 144/2 = 72.
Now, use the rule that all angles in a quadrilateral add up to 360 to find R. 360-93-72-63 = 132.
Let me know if this doesn't work, I'll look at it again.
Answer:
x > -7
Step-by-step explanation:
Step 1: Translate
Twice a number = 2x
Six more = + 6
At least = >
-8 = -8
Step 2: Write out inequality
2x + 6 > -8
Step 3: Solve
2x > - 14
x > -7
3 out of 25 = 12 out of 100
3 out of 50 = 6 out of 100
2 out of 25 = 8 out of 100
12 + 6 + 8 = 26
100 - 26 = 74%