1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldier1979 [14.2K]
3 years ago
6

2+2 (I have been struggling on this for a long time)

Mathematics
2 answers:
Nadya [2.5K]3 years ago
6 0
It’s is 4 2+2=4 ez your welcome
Dmitry [639]3 years ago
5 0
You might need a maths degree for this one, I believe it’s 4 but don’t quote me on that.
You might be interested in
Pictures below. Find x.
denis-greek [22]
Hope this helps u...!!

8 0
3 years ago
The probability that a lab specimen contains high levels of contamination is 0.10. Five samples are checked, and the samples are
raketka [301]

Answer:

(a) 0.59049 (b) 0.32805 (c) 0.40951

Step-by-step explanation:

Let's define

A_{i}: the lab specimen number i contains high levels of contamination for i = 1, 2, 3, 4, 5, so,

P(A_{i})=0.1 for i = 1, 2, 3, 4, 5

The complement for A_{i} is given by

A_{i}^{$c$}: the lab specimen number i does not contains high levels of contamination for i = 1, 2, 3, 4, 5, so

P(A_{i}^{$c$})=0.9 for i = 1, 2, 3, 4, 5

(a) The probability that none contain high levels of contamination is given by

P(A_{1}^{$c$}∩A_{2}^{$c$}∩A_{3}^{$c$}∩A_{4}^{$c$}∩A_{5}^{$c$})=(0.9)^{5}=0.59049 because we have independent events.

(b) The probability that exactly one contains high levels of contamination is given by

P(A_{1}∩A_{2}^{$c$}∩A_{3}^{$c$}∩A_{4}^{$c$}∩A_{5}^{$c$})+P(A_{1}^{$c$}∩A_{2}∩A_{3}^{$c$}∩A_{4}^{$c$}∩A_{5}^{$c$})+P(A_{1}^{$c$}∩A_{2}^{$c$}∩A_{3}∩A_{4}^{$c$}∩A_{5}^{$c$})+P(A_{1}^{$c$}∩A_{2}^{$c$}∩A_{3}^{$c$}∩A_{4}∩A_{5}^{$c$})+P(A_{1}^{$c$}∩A_{2}^{$c$}∩A_{3}^{$c$}∩A_{4}^{$c$}∩A_{5})=5×(0.1)×(0.9)^{4}=0.32805

because we have independent events.

(c) The probability that at least one contains high levels of contamination is

P(A_{1}∪A_{2}∪A_{3}∪A_{4}∪A_{5})=1-P(A_{1}^{$c$}∩A_{2}^{$c$}∩A_{3}^{$c$}∩A_{4}^{$c$}∩A_{5}^{$c$})=1-0.59049=0.40951

6 0
3 years ago
Round 89678 to the nearest ten thousand
DochEvi [55]
90000 because 9 rounds up to 10, and so 89 rounds up to 90.
8 0
4 years ago
Read 2 more answers
Find the sum of the positive integers less than 200 which are not multiples of 4 and 7​
taurus [48]

Answer:

12942 is the sum of positive integers between 1 (inclusive) and 199 (inclusive) that are not multiples of 4 and not multiples 7.

Step-by-step explanation:

For an arithmetic series with:

  • a_1 as the first term,
  • a_n as the last term, and
  • d as the common difference,

there would be \displaystyle \left(\frac{a_n - a_1}{d} + 1\right) terms, where as the sum would be \displaystyle \frac{1}{2}\, \displaystyle \underbrace{\left(\frac{a_n - a_1}{d} + 1\right)}_\text{number of terms}\, (a_1 + a_n).

Positive integers between 1 (inclusive) and 199 (inclusive) include:

1,\, 2,\, \dots,\, 199.

The common difference of this arithmetic series is 1. There would be (199 - 1) + 1 = 199 terms. The sum of these integers would thus be:

\begin{aligned}\frac{1}{2}\times ((199 - 1) + 1) \times (1 + 199) = 19900 \end{aligned}.

Similarly, positive integers between 1 (inclusive) and 199 (inclusive) that are multiples of 4 include:

4,\, 8,\, \dots,\, 196.

The common difference of this arithmetic series is 4. There would be (196 - 4) / 4 + 1 = 49 terms. The sum of these integers would thus be:

\begin{aligned}\frac{1}{2}\times 49 \times (4 + 196) = 4900 \end{aligned}

Positive integers between 1 (inclusive) and 199 (inclusive) that are multiples of 7 include:

7,\, 14,\, \dots,\, 196.

The common difference of this arithmetic series is 7. There would be (196 - 7) / 7 + 1 = 28 terms. The sum of these integers would thus be:

\begin{aligned}\frac{1}{2}\times 28 \times (7 + 196) = 2842 \end{aligned}

Positive integers between 1 (inclusive) and 199 (inclusive) that are multiples of 28 (integers that are both multiples of 4 and multiples of 7) include:

28,\, 56,\, \dots,\, 196.

The common difference of this arithmetic series is 28. There would be (196 - 28) / 28 + 1 = 7 terms. The sum of these integers would thus be:

\begin{aligned}\frac{1}{2}\times 7 \times (28 + 196) = 784 \end{aligned}.

The requested sum will be equal to:

  • the sum of all integers from 1 to 199,
  • minus the sum of all integer multiples of 4 between 1\! and 199\!, and the sum integer multiples of 7 between 1 and 199,
  • plus the sum of all integer multiples of 28 between 1 and 199- these numbers were subtracted twice in the previous step and should be added back to the sum once.

That is:

19900 - 4900 - 2842 + 784 = 12942.

8 0
3 years ago
One piece of pizza has been removed from a large pizza pie. The shaded area shown represents the piece that has been removed.
shusha [124]

Answer:

Step-by-step explanation:

i would love to help but you need to include either the measurement or a screen shot/picture of the equation.

4 0
4 years ago
Other questions:
  • Geometry Help
    6·2 answers
  • G(x)=-2/5x-2 inverse function with steps please​
    7·1 answer
  • Explain the difference between (-5)2 and -5)2
    11·1 answer
  • List the numbers from greatest to least.
    10·1 answer
  • ANSWER QUICKLY PLZZZZZZ ASAP ​
    14·2 answers
  • What is the range of the data vaules 777521001346
    12·1 answer
  • Select the correct answer.
    10·2 answers
  • A two digit number is such that, the sum of its digit is 13.When the digits are interchange, the original number is increased by
    11·1 answer
  • Please help and dont get it wrong! thank you =)))
    6·1 answer
  • Plssss help me its urgent:(
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!