<span>Important information to solve the exercise :
Substance ΔHf (kJ/mol):
HCl(g)= −92.0 </span><span>kJ/mol
Al(OH)3(s)= −1277.0 </span><span><span>kJ/mol
</span> H2O(l)= −285.8 </span><span>kJ/mol
AlCl3(s) =−705.6 </span><span>kJ/mol
</span><span>Al(OH)3(s)+3HCl(g)→AlCl3(s)+3H2O(l)
reactants products
products- reactants:</span><span>
(−705.6) + (3 x −285.8) - ( −1277.0 ) - (3 x −92.0 ) = - 10.0 </span>kJ per mole at 25°C
<span>
</span>
Answer:
Kₐ = 6.7 x 10⁻⁴
Explanation:
First lets write the equilibrium expression, Ka , for the dissociation of hydrofluoric acid:
HF + H₂O ⇄ H₃O⁺ + F⁻
Kₐ = [ H₃O⁺ ] [ F⁻ ] /[ [ HF ]
Since we are given the pH we can calculate the [ H₃O⁺ ] ( pH = - log [ H₃O⁺ ] , and because the acid dissociates into a 1: 1 relation , we will also have [F⁻ ]. The [ HF ] is given in the question so we have all the information that is needed to compute Kₐ.
pH = -log [ H₃O⁺ ]
1.68 = - log [ H₃O⁺ ]
Taking antilog to both sides of this equation:
10^-1.68 = [ H₃O⁺ ] ⇒ 2.1 X 10⁻² M= [ H₃O⁺ ]
[ F⁻ ] = 2.1 X 10⁻² M
Solving for Kₐ :
Kₐ = ( 2.1 X 10⁻² ) x ( 2.1 X 10⁻² ) / 0.65 = 6.7 x 10⁻⁴
(Rounded to two significant figures, the powers of 10 have infinite precision )
<span>I believe the correct 2nd reaction is:</span>
cof2(g)⇌1/2 co2(g)+1/2 cf4(g)
where we can see that it is exactly one-half of the
original
Therefore the new Kp is:
new Kp = (old Kp)^(1/2)
new Kp = (2.2 x 10^6)^(1/2)
<span>new Kp = 1,483.24 </span>
holacomo es tu pregunta nola entiendo
lanation:
Answer:
filter the hot mixture.
Explanation:
Solid is stayed undissolved since the arrangement is gotten super saturated. On the off chance that solid molecule is available recrysallization won't happen in this way we need expel the solid molecule by filtarion in hot condition itself . Subsequently, arrangement become totally homogenous and recrysallization item will shaped by moderate cooling