The balanced equation for the above reaction is as follows;
CaCO₃ + 2HCl ----> CaCl₂ + H₂O + CO₂
stoichiometry of CaCO₃ to HCl is 1:2
molar volume states that 1 mol of any gas occupies a volume of 22.4 L at STP.
volume of 22.4 L occupied by 1 mol
therefore 0.56 L occupied by - 0.56 L / 22.4 L/mol = 0.025 mol
number of HCl moles reacted - 0.025 mol
2 mol of HCl reacts with 1 mol of CaCO₃
therefore 0.025 mol reacts with - 0.025/2 = 0.0125 mol
mass of CaCO₃ required - 0.0125 mol x 100 g/mol = 1.25 g
1.25 g of CaCO₃ is required
In a chemical reaction, the mass of the products<span> is less than the mass of the reactants.
the first step in most stoichiometry problems is to <span>convert given quantities to moles.
Hope this helps! If it did, pls marky me brainly thank, and 5star me</span>
</span>
Helium is a chemical ELEMENT of the family of noble gases. Its chemical symbol is 'He' which has an atomic number of 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas, the first in the noble gas group in the periodic table. Although it doesn't really react under normal conditions, it is the second most abundant element in the universe.
Elements are pure substances that cannot be broken down any further.
Answer:
Explanation:
HCl + NaOH = NaCl + H₂O.
1 mole 1 mole 1 mole 1 mole
6.93 g of hydrochloric acid = 6.93 / 36.5 = .189 mole of HCl
2.4 g of NaOH = 2.4 / 40 = .06 mole of NaOH
NaOH is in short supply so it is the limiting reagent .
1 mole of NaOH reacts with 1 mole of HCl to give 1 mole of Water
.06 mole of NaOH will react with .06 mole of HCl to give .06 mole of water
Water formed = .06 mole
= .06 x 18 = 1.08 g
= 1.1 g
Answer:
V₂ = 3227.46 L
Explanation:
Given data:
Initial volume of gas = 1000 L
Initial temperature = 50°C (50 +273 = 323 K)
Initial pressure = 101.3 KPa
Final pressure = 27.5 KPa
Final temperature = 10°C (10 +273 = 283 K)
Final volume = ?
Solution:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 101.3 KPa × 1000 L × 283 K / 323 K × 27.5 KPa
V₂ = 28667900 KPa .L. K /
8882.5 K.KPa
V₂ = 3227.46 L