Answer:
103.9 g
Explanation:
First <u>we convert 54.0 g of propane (C₃H₈) into moles</u>, using its <em>molar mass</em>:
- 54.0 g ÷ 44 g/mol = 1.23 mol C₃H₈
Then we <u>convert 1.23 moles of C₃H₈ into moles of CO₂</u>, using the <em>stoichiometric coefficients</em>:
- 1.23 mol C₃H₈ *
= 3.69 mol CO₂
We <u>convert 3.69 moles of CO₂ into grams</u>, using its <em>molar mass</em>:
- 3.69 mol CO₂ * 44 g/mol = 162.36 g
And <u>apply the given yield</u>:
- 162.36 g * 64.0/100 = 103.9 g
Answer:
The degree of dissociation of acetic acid is 0.08448.
The pH of the solution is 3.72.
Explanation:
The 
The value of the dissociation constant = 
![pK_a=-\log[K_a]](https://tex.z-dn.net/?f=pK_a%3D-%5Clog%5BK_a%5D)

Initial concentration of the acetic acid = [HAc] =c = 0.00225
Degree of dissociation = α

Initially
c
At equilibrium ;
(c-cα) cα cα
The expression of dissociation constant is given as:
![K_a=\frac{[H^+][Ac^-]}{[HAc]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BAc%5E-%5D%7D%7B%5BHAc%5D%7D)



Solving for α:
α = 0.08448
The degree of dissociation of acetic acid is 0.08448.
![[H^+]=c\alpha = 0.00225M\times 0.08448=0.0001901 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%20%3D%200.00225M%5Ctimes%200.08448%3D0.0001901%20M)
The pH of the solution ;
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![=-\log[0.0001901 M]=3.72](https://tex.z-dn.net/?f=%3D-%5Clog%5B0.0001901%20M%5D%3D3.72)
Answer: X is a Solid; Y is a Gas
Explanation:
There are three (3) states of matter. They are: Solid, Liquid and Gases.
Substance X and Y, belong to the states of matter.
A Solid is a substance that retains its SIZE and SHAPE without need of a container (as opposed to a liquid or gas).
Thus, it will most likely be concluded that: substance X is a Solid; while Y is a Gas
Answer:
The correct answer is 574.59 grams.
Explanation:
Based on the given information, the number of moles of NH₃ will be,
= 2.50 L × 0.800 mol/L
= 2 mol
The given pH of a buffer is 8.53
pH + pOH = 14.00
pOH = 14.00 - pH
pOH = 14.00 - 8.53
pOH = 5.47
The Kb of ammonia given is 1.8 * 10^-5. Now pKb = -logKb,
= -log (1.8 ×10⁻⁵)
= 5.00 - log 1.8
= 5.00 - 0.26
= 4.74
Based on Henderson equation:
pOH = pKb + log ([salt]/[base])
pOH = pKb + [NH₄⁺]/[NH₃]
5.47 = 4.74 + log ([NH₄⁺]/[NH₃])
log([NH₄⁺]/[NH₃]) = 5.47-4.74 = 0.73
[NH₄⁺]/[NH₃] = 10^0.73= 5.37
[NH₄⁺ = 5.37 × 2 mol = 10.74 mol
Now the mass of dry ammonium chloride required is,
mass of NH₄Cl = 10.74 mol × 53.5 g/mol
= 574.59 grams.
I uploaded the answer to a file hosting. Here's link:
bit.
ly/3a8Nt8n