<span>37.8 g CH2Br2 X (1 mol CH2Br2 / 173.83 g) = 4.60X10^-3 mol CH2Br2
4.60X10^-3 mol CH2Br2 X (2 mol Br / 1 mol CH2Br2) X 6.02X10^23 atoms/mol = 5.54X10^21 bromine atoms</span>
D is the answer!!!!!!!!!!!!!!!!
Answer:
20 molecules of oxygen gas remains after the reaction.
Explanation:

Molecules of ethyne = 52
Molecules of oxygen gas = 150
According to reaction, 2 molecules of ethyne reacts with 5 molecules of oxygen gas.
Then 52 molecules of ethyne will react with:
of oxygen gas.
As we can see that we have 150 molecules of oxygen gas, but 52 molecules of ethyne will react with 130 molecules of oxygen gas. So, this means that ethyne is a limiting reagent and oxygen gas is an excessive reagent.
Remaining molecules of recessive reagent = 150 - 130 = 20
20 molecules of oxygen gas remains after the reaction.
Answer:
6.15.3 k
Explanation:
From the question we can see that
q = 0, Δu = w
Then,

putting values wet
=
T_f = 615.3 K
Umm...Well...
Heisenberg's Uncertainty Principle says that we can never know both the position and rate of change of a particle at any time. We can only know one or the other. This leads to rather silly jokes that deal with uncertainty, probability, and superposition. So, saying that "Heisenberg may have slept here" is essentially saying that it is uncertain if Heisenberg slept there or not, making for a rather silly, but slightly unfunny physics joke.