1. x/-3=-15
x=45
2. -7+3(-12)÷-3
-7+12
5
3. f(-4)=(-4)²-(-4)
f(-4)=16-(-4)
f(-4)=20
4. x-9=17
5. 2x+3=35
6. -8-12-(-20)
-20-(-20)
0
7. -2(-3)²(-1)
-2(9)(-1)
-18(-1)
18
8. x-(-2)
9. subtract 7 then divide by -2
10. 6+(-18)+(-13)+9
-12-4
-16
11. 5x=11
12. division property
13. -3³ = -27
14. x/2-3=7
x/2=10
x=20
15. 2x-5=15
16. x/-4-(-8)=12
x/-4=4
x=-16
17. 168
18. 16-20-(-8)-9
-4-(-8)-9
4-9
-5
Correct Question: If m∠JKM = 43, m∠MKL = (8x - 20), and m∠JKL = (10x - 11), find each measure.
1. x = ?
2. m∠MKL = ?
3. m∠JKL = ?
Answer/Step-by-step explanation:
Given:
m<JKM = 43,
m<MKL = (8x - 20),
m<JKL = (10x - 11).
Required:
1. Value of x
2. m<MKL
3. m<JKL
Solution:
1. Value of x:
m<JKL = m<MKL + m<JKM (angle addition postulate)
Therefore:

Solve for x


Subtract 8x from both sides


Add 11 to both sides


Divide both sides by 2


2. m<MKL = 8x - 20
Plug in the value of x
m<MKL = 8(17) - 20 = 136 - 20 = 116°
3. m<JKL = 10x - 11
m<JKL = 10(17) - 11 = 170 - 11 = 159°
The value of <em>x </em>in the equation, (3x + 30), is 10.
Answer:
48 cats
Step-by-step explanation:
Am interesting factoid about ratios:
The ratio
can be separated into fractional parts of
and
. We need to know the cat part.
, so that is the fraction part. Then, we multiply this fraction by 168 to get the total number of cats. This number is 48.