Answer:a
Explanation:
i think so cs i read the ariticle
Answer:
No one is correct. The correct expression is:
Keq = [H₂]² . [O₂]² / [H₂O]²
Explanation:
To build the Keq expression in a chemical equilibrium you must consider the molar concentrations of reactants / products, and they must be elevated to the stoichiometric coefficient.
The balance reaction is:
<u>2</u> H₂O (g) ⇄ <u>2</u> H₂ (g) + O₂ (g)
Keq = [H₂]² . [O₂] / [H₂O]²
In opposite side: <u>2</u> H₂ (g) + O₂ (g) ⇄ <u>2</u> H₂O (g)
Keq = [H₂O]² / [H₂]² . [O₂]
Answer:
1.
molecules of CO₂
2. 10⁴ molecules of H₂O
3. 8.75×10³² molecules of C₆H₁₂O₆
Explanation:
1.
molecules of CO₂
2. 10⁴ molecules of H₂O
3. 8.75×10³² molecules of C₆H₁₂O₆
Answer:
What is the reaction quotient, Q, for this system when [N2] = 2.00 M, [H2] = 2.00 M, and [NH3] = 1.00 M at 472°C?
A. 0.0625
How does Q compare to Keq?
B. Q < Keq
Explanation:
Answer:
Explanation:
mass % of C = 0.27/0.45*100 = 60%
mass % of H = 0.02/0.45*100 = 4.4%
mass % of O = 0.16/0.45*100 = 35.6%
Total = 60%+4.4%+ 35.6% = 100%