Answer:
yes, if they were in rest they would have potential energy
Explanation:
I believe the correct answer is B
Answer:
17.6510 L
Explanation:
First we should get the number of moles of helium here by Boyle's law
PV=nRT
P=750/760= 0.9868 atm
T=25+273=298 kelvin
R= 0.08206
V= 20L
so
n=PV/RT
n=0.9868×20/0.08206×298
n=0.80707 mol
Then use the same law
V=0.80707×0.08206×263/0.9869=
17.6510L
SO THE VOLUME WILL BE 17.6510 L
Answer:
10.5g
Explanation:
First, let us calculate the number of mole of NaHCO3 present in the solution. This is illustrated below:
Volume = 250mL = 250/1000 = 0.25L
Molarity = 0.5M
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole = 0.5 x 0.25
Mole = 0.125 mole
Now, we shall be converting 0.125 mole of NaHCO3 to grams to obtain the desired result. This can be achieved by doing the following:
Molar Mass of NaHCO3 = 23 + 1 + 12 +(16x3) = 23 + 1 +12 +48 = 84g/mol
Number of mole of NaHCO3 = 0.125 mole
Mass of NaHCO3 =?
Mass = number of mole x molar Mass
Mass of NaHCO3 = 0.125 x 84
Mass of NaHCO3 = 10.5g
Therefore, 10.5g of NaHCO3 is needed.
Answer:
c sodium
Explanation: sodium element is likely to have the highest thermal conductivity.