The Ideal Gas Law makes a few assumptions from the Kinetic-Molecular Theory. These assumptions make our work much easier but aren't true under all conditions. The assumptions are,
1) Particles of a gas have virtually no volume and are like single points.
2) Particles exhibit no attractions or repulsions between them.
3) Particles are in continuous, random motion.
4) Collisions between particles are elastic, meaning basically that when they collide, they don't lose any energy.
5) The average kinetic energy is the same for all gasses at a given temperature, regardless of the identity of the gas.
It's generally true that gasses are mostly empty space and their particles occupy very little volume. Gasses are usually far enough apart that they exhibit very little attractive or repulsive forces. When energetic, the gas particles are also in fairly continuous motion, and without other forces, the motion is basically random. Collisions absorb very little energy, and the average KE is pretty close.
Most of these assumptions are dependent on having gas particles very spread apart. When is that true? Think about the other gas laws to remember what properties are related to volume.
A gas with a low pressure and a high temperature will be spread out and therefore exhibit ideal properties.
So, in analyzing the four choices given, we look for low P and high T.
A is at absolute zero, which is pretty much impossible, and definitely does not describe a gas. We rule this out immediately.
B and D are at the same temperature (273 K, or 0 °C), but C is at 100 K, or -173 K. This is very cold, so we rule that out.
We move on to comparing the pressures of B and D. Remember, a low pressure means the particles are more spread out. B has P = 1 Pa, but D has 100 kPa. We need the same units to confirm. Based on our metric prefixes, we know that kPa is kilopascals, and is thus 1000 pascals. So, the pressure of D is five orders of magnitude greater! Thus, the answer is B.
Explanation:
Below is an attachment containing the solution.
Answer:
The jet will fly 2400 km.
Explanation:
Given the velocity of the jet flying toward the east is 1,500 kmph toward the east.
We need to find the distance covered in 1.6 hours.
In our problem we are given speed and time, we can easily determine the distance using the following formula.


So, the supersonic jet will travel 2400 km in 1.6 hours toward the east from its starting point.
Answer:
Impulse = 88 kg m/s
Mass = 8.8 kg
Explanation:
<u>We are given a graph of Force vs. Time. Looking at the graph we can see that the Force acts approximately between the time interval from 1sec to 4sec. </u>
Newton's Second Law relates an object's acceleration as a function of both the object's mass and the applied net force on the object. It is expressed as:
Eqn. (1)
where
: is the Net Force in Newtons (
)
: is the mass (
)
: is the acceleration (
)
We also know that the acceleration is denoted by the velocity (
) of an object as a function of time (
) with
Eqn. (2)
Now substituting Eqn. (2) into Eqn. (1) we have
Eqn. (3)
However since in Eqn. (3) the time-variable is present, as a result the left hand side (i.e.
is in fact the Impulse
of the cart ), whilst the right hand side denotes the change in momentum of the cart, which by definition gives as the impulse. Also from the graph we can say that the Net Force is approximately ≈
and
(thus just before the cut-off time of the force acting).
Thus to find the Impulse we have:

So the impulse of the cart is 
Then, we know that the cart is moving at
. Plugging in the values in Eqn. (3) we have:

So the mass of the cart is
.