Answer:
B. counterclockwise
Explanation:
We can solve the problem by using the right-hand rule:
- put your thumb finger of the right hand in the same direction of the current in the wire (upward)
- wrap the other fingers around the thumb
- the direction of the other fingers will give the direction of the magnetic field lines
By doing these steps, we see that the other fingers form concentric circles in a counterclockwise direction (seen from above), so this is the direction of the magnetic field lines.
Please elaborate more on your question so I can help you
The current is defined as the ratio between the charge Q flowing through a certain point of a wire and the time interval,

:

First we need to find the net charge flowing at a certain point of the wire in one second,

. Using I=0.92 A and re-arranging the previous equation, we find

Now we know that each electron carries a charge of

, so if we divide the charge Q flowing in the wire by the charge of one electron, we find the number of electron flowing in one second:
Answer:
A. 181.24 N
Explanation:
The magnitude of hte electrostatic force between two charged objects is given by the equation

where
k is the Coulomb's constant
q1, q2 are the magnitudes of the two charges
r is the separation between the charges
In this problem, we have:
is the magnitude of the 1st charge
is the magnitude of the 2nd charge
r = 2.5 cm = 0.025 m is the separation between the charges
Therefore, the magnitude of the electric force is:

So, the closest answer is
A) 181.24 N
Answer: c. they will hit the ground at the same time
Explanation:
The volume of both objects is almost the same, so the force of friction will be the same in each one, so we can discard it.
Now, when yo drop an object, the acceleration of the object is always g = 9.8m/s^2 downwards, independent of the mass of the object.
So if you drop two objects with the same volume but different mass, because the acceleration is the same for both of them, they will hit the ground at the same time, this means that the density of the object has no impact in how much time the object needs to reach the floor.
So the correct option is c