A :-) for this question , we should apply
F = ma
Given - F = 12 N
a = 0.20 m/s^2
Solution -
F = ma
12 = m x 0.20
m = 12 by 0.20
m = 60 kg
.:. The mass is 60 kg.
<span>An imaginary line perpendicular to a reflecting surface is called "a normal" (principle line)
So, Your Answer would be Option B
Hope this helps!</span>
Maybe push or pull an object with a large amount of mass? you are force a (pushing through object) aka making contact. i hope i helped not good with physics :)
Answer:
it needs to be shaken but make sure you have enough room to shake it safely
Explanation:
To properly operate the laboratory thermometer it needs to be shaken but make sure you have enough room to shake it safely. This done because there is a small bend in the mercury channel of a clinical thermometer that uses mercury. You must shake the thermometer to get the mercury from a previous reading from the thermometer back into the bulb for taking new reading. The bend prevents flow back into the tube so that one can comfortably take reading.
To solve this problem we will apply the theorem given in the conservation of energy, by which we have that it is conserved and that in terms of potential and kinetic energy, in their initial moment they must be equal to the final potential and kinetic energy. This is,


Replacing the 5100MJ for satellite as initial potential energy, 4200MJ for initial kinetic energy and 5700MJ for final potential energy we have that



Therefore the final kinetic energy is 3600MJ