Answer:
Force's magnitude
Direction: down (towards the center of the Earth)
Explanation:
Recall that the magnetic force on a conductor of length L carrying a current I in a magnetic field B is given by the equation:
in the case the magnetic field B and the direction of the current are at 90 degrees from each other (which is our case). The direction of the force will be given by the "right hand rule" associated with the vector product that defines this force.
Since the current is moving East, and the magnetic field of the Earth goes from North to South, the resultant Force vector will be pointing towards the Earth (and perpendicular to the plane defined by the current's direction and the magnetic field B)
The magnitude of the force, is given by the formula above, and given that all quantities to be considered are is SI units, it will result in Newtons (N):

Hi,Find answers from Task 5
1.(X+4)+(X)+(X+4)+(X)=50cm
4x+8=50cm
4x=42
X=10.5cm
Length=10.5+4=14.5cm
Width=10.5cm
Area= length × width=(10.5/100) × (14.5/100) =0.0152m2
2. Volume of a sphere= 4/3 ×π×r³
4/3 ×π×r³=3.2×10^-6 m³
r³=3.2×10^-6 m³/1.33×π
r³=7.64134761e-7
r=0.00914m
Surface area of the blood drop= 4πr²
=4×3.142×0.00914×0.00914=0.00105m²
3.
Equation of an ideal gas = PV =n RT
Equation for pressure, = P= n RT/V
Equation for the volume of an ideal gas= V= n RT/P
If the volume of gas doubles ,V(new)= 2n RT/P
Equation for temperature of an ideal gas, T = PV/n R
If temperature of gas triples, T (new)= 3PV/n R
New Equation for Pressure, = n× R× (3PV/n R)/(2n RT/P)
Pressure factor increase= P(new)/P(old) ={ n× R× (3PV/n R)/(2n RT/P)}/{ n RT/V}
=3PV²/2n RT
The answer is D.<span>longitudinal</span>
This is kinda confusing. I wish u just to a screenshot of the problem but here goes...
Forest at highest latitudes- Hardwood trees/deer, squirrel, foxes
Praries/temperate climate- Mostly small mammals/scrubs/steppes
High humidity/rainfall near equator- Abundant thick vegatation/manny species
No trees/ polar bears/ mosses- 25cm rain/few animals
The light can definitely change the mystery material. This can occur through a change in temperature or color (option C).
A material is affected by light mainly if the material absorbs the light. Based on the chart, we know this mystery material can absorb two types of light:
Moreover, this phenomenon can lead to two main changes:
- Change in temperature: Light affects materials by increasing their temperature of these. A common example is the way the temperature of an object increases if it is exposed to sunlight.
- Change in color: Some materials react to light by changing their color.
Based on this, the material can change its color or temperature.
Note: This question is incomplete; here is the missing part:
A. Yes, but the mystery material can change in only one way, such as by getting warm, because all the light that a material absorbs will affect that material in the same way.
B. No. The mystery material can’t change because the light is not a physical thing. Light cannot change physical things like the mystery material.
C. Yes and the mystery material can change in one or two different ways, such as by getting warm and/or changing color, because different types of light can cause different changes to a material when they are absorbed.
D. There is no way to know whether the mystery material will change or not.
Learn more about sunlight in: brainly.com/question/1603783