The distance between the two cities is 513.24 km.
<h3>Time of motion when the two trains meet</h3>
The time spent on the journey when the two trains meet is calculated as follows;
(Va - Vb)t = d
where;
- d is the distance between the trains before meeting
(76 - 65)t = 40
11t = 40
t = 40/11
t = 3.64 hr
<h3>Distance traveled by the fast train</h3>
d1 = 76 km/h x 3.64 h
d1 = 276.64 km
<h3>Distance traveled by the slow train</h3>
d2 = 65 km/h x 3.64 h
d2 = 236.6 km
The distance between the two cities = 276.64 km + 236.6 km
= 513.24 km
Learn more about relative velocity here: brainly.com/question/17228388
Answer:

Explanation:
In this case we have to use the Principle of conservation of Momentum:
<em>This principle says that in a system the total momentum is constant if no external forces act in the system. The formula is:</em>

<em>Where:</em>
Mass of the first object.
Mass of the second object.
Initial velocity of the first object.
Initial velocity of the second object.
Final velocity of the first object.
Final velocity of the second object.
In <u>this problem</u> we have:


Observation:
Is because the system has the same initial velocity.
First we have to find
,

We can rewrite it as:

Replacing with the data:

We found the final velocity of the cart, but the problem asks for the resulting change in the cart speed, this means:

Then, the resulting change in the cart speed is:

Answer:
0.75
Explanation:
Since the static frictional force is the maximum force applied just before sliding, our frictional force, F is 300 N.
Since F = μN where μ = coefficient of static friction and N = normal force = 400 N (which is the downward force applied against the surface).
So, μ = F/N
= 300 N/400 N
= 3/4
= 0.75
So, the coefficient of static friction μ = 0.75
Answer:
0.07756 m
Explanation:
Given mass of object =0.20 kg
spring constant = 120 n/m
maximum speed = 1.9 m/sec
We have to find the amplitude of the motion
We know that maximum speed of the object when it is in harmonic motion is given by
where A is amplitude and
is angular velocity
Angular velocity is given by
where k is spring constant and m is mass
So 
