<u>Answer:</u> The amount remained after 151 seconds are 0.041 moles
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 151 sec
= initial amount of the reactant = 0.085 moles
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![4.82\times 10^{-3}=\frac{2.303}{151}\log\frac{0.085}{[A]}](https://tex.z-dn.net/?f=4.82%5Ctimes%2010%5E%7B-3%7D%3D%5Cfrac%7B2.303%7D%7B151%7D%5Clog%5Cfrac%7B0.085%7D%7B%5BA%5D%7D)
![[A]=0.041moles](https://tex.z-dn.net/?f=%5BA%5D%3D0.041moles)
Hence, the amount remained after 151 seconds are 0.041 moles
The correct is tricky, be careful. The right is silicon dioxyde (SiO2)
Silicon Oxides are written in the form SiOx, (0 <x <2), so:
there is no silicon trioxygen and disilicon dioxygen.
SiO is called silicon monoxide and not monosiicon oxygen, so this proposition is false.
All that remains is the silicon dioxide (SiO2) that is written correctly.
Silicon dioxide can be synthesized but also exists in abundance in nature. Silicon (Si) represents about 26% of the Earth's crust. Silica (SiO2), the natural form of silicon dioxide, accounts for about 60%.
Answer:
The answer is "0.0000190 and 2.7 J".
Explanation:


Given:

by putting the value into the above formula so, the value is 2.7 J
<h3><u>Answer;</u></h3>
When hydrogen is covalently bonded to an electronegative atom
<h3><u>Explanation;</u></h3>
- Hydrogen bonding is a special type of dipole-dipole attraction between molecules. It results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom.
- Highly electronegative atoms attract shared electrons more strongly than hydrogen does, resulting in a slight positive charge on the hydrogen atom. The slightly positive hydrogen atom is then attracted to another electronegative atom, forming a hydrogen bond.