Answer:
8.33 moles CO2 X. 25mol O2. 16mol CO2. = 13.0 moles
The liquid did not chemically bond after 3 days, therefor it is a mixture.
Hope this helps!
Answer:
dude! it's static!
Explanation:
a dry cell can't function and is therefore static!
Answer:
0.1357 M
Explanation:
(a) The balanced reaction is shown below as:

(b) Moles of
can be calculated as:
Or,
Given :
For
:
Molarity = 0.1450 M
Volume = 10.00 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 10×10⁻³ L
Thus, moles of
:
Moles of
= 0.00145 moles
From the reaction,
1 mole of
react with 2 moles of NaOH
0.00145 mole of
react with 2*0.00145 mole of NaOH
Moles of NaOH = 0.0029 moles
Volume = 21.37 mL = 21.37×10⁻³ L
Molarity = Moles / Volume = 0.0029 / 21.37×10⁻³ M = 0.1357 M
Answer:
0.36 M
Explanation:
There is some info missing. I think this is the complete question.
<em>Suppose a 250 mL flask is filled with 0.30 mol of N₂ and 0.70 mol of NO. The following reaction becomes possible:
</em>
<em>N₂(g) +O₂(g) ⇄ 2 NO(g)
</em>
<em>The equilibrium constant K for this reaction is 7.70 at the temperature of the flask. Calculate the equilibrium molarity of O₂. Round your answer to two decimal places.</em>
<em />
Initially, there is no O₂, so the reaction can only proceed to the left to attain equilibrium. The initial concentrations of the other substances are:
[N₂] = 0.30 mol / 0.250 L = 1.2 M
[NO] = 0.70 mol / 0.250 L = 2.8 M
We can find the concentrations at equilibrium using an ICE Chart. We recognize 3 stages (Initial, Change, and Equilibrium) and complete each row with the concentration or change in the concentration.
N₂(g) +O₂(g) ⇄ 2 NO(g)
I 1.2 0 2.8
C +x +x -2x
E 1.2+x x 2.8 - 2x
The equilibrium constant (K) is:
![K=7.70=\frac{[NO]^{2}}{[N_{2}][O_{2}]} =\frac{(2.8-2x)^{2} }{(1.2+x).x}](https://tex.z-dn.net/?f=K%3D7.70%3D%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D%20%3D%5Cfrac%7B%282.8-2x%29%5E%7B2%7D%20%7D%7B%281.2%2Bx%29.x%7D)
Solving for x, the positive one is x = 0.3601 M
[O₂] = 0.3601 M ≈ 0.36 M