Answer:
Less than 0.033 M:
![[Z]_{eq}=2.4x10^{-3}M](https://tex.z-dn.net/?f=%5BZ%5D_%7Beq%7D%3D2.4x10%5E%7B-3%7DM)
Explanation:
Hello,
In this case, the described equilibrium is:

Thus, the law of mass action is:
![K=\frac{[Z]^2}{[A]^2[B]}=0.43](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BZ%5D%5E2%7D%7B%5BA%5D%5E2%5BB%5D%7D%3D0.43)
Nevertheless, given the initial concentration of Z that is 0.033 M, we should invert the equilibrium since the reaction will move leftwards:
![\frac{1}{K}=\frac{[A]^2[B]}{[Z]^2}=\frac{1}{0.43}=2.33](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7BK%7D%3D%5Cfrac%7B%5BA%5D%5E2%5BB%5D%7D%7B%5BZ%5D%5E2%7D%3D%5Cfrac%7B1%7D%7B0.43%7D%3D2.33)
Know, by introducing the change
due to the reaction extent, we can write:

Which has the following solution:

But the correct solution is
since the other solutions make the equilibrium concentration of Z negative which is not possible. In such a way, its concentration at equilibrium is:
![[Z]_{eq}=0.033M-2(0.0153M)](https://tex.z-dn.net/?f=%5BZ%5D_%7Beq%7D%3D0.033M-2%280.0153M%29)
![[Z]_{eq}=2.4x10^{-3}M](https://tex.z-dn.net/?f=%5BZ%5D_%7Beq%7D%3D2.4x10%5E%7B-3%7DM)
Which is clearly less than 0.033 M since the addition of a product shift the reaction leftwards in order to reestablish equilibrium (Le Chatelier's principle).
Regards.
Answer:
<h2>5.49</h2>
Explanation:
The pH of a solution can be found by using the formula
![pH = - log ([ { H_3O}^{+}])](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%28%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D%29)
H3O+ is the hydronium ion
From the question we have

We have the final answer as
<h3>5.49 </h3>
Hope this helps you
Answer:
24 is the correct anwer
this the anwer text this u no
Answer:
Electrolytes are substances that can ionize in water. They could be acids, bases or salts as long as they give ions when they dissolve in water.
Explanation:
- <em>Strong electrolytes</em> completely ionize when dissolved in water, leaving no neutral molecules. The strong electrolytes here are:<u> salt water</u>, <u>baking soda (NaHCO3) solution.</u>
- <em>Weak electrolytes</em> do not completely dissociate in solution, and hence have a low ionic yield. Examples of this would be<u> vinegar </u>and <u>bleach </u>(which could be sodium hypochlorite or chlorine, which are weakly dissociated).
- <em>Non-electrolytes </em>will remain as molecules and are not ionized in water at all. In this case, <u>sugar solution is a non-electrolytes</u>, even though sugar dissolves in water, but it remains as a whole molecule and not ions.
6,02×10²³ * 3,2 = 19,264×10²³=1,9264×10²⁴