Problem a1=325 , d=25 , S19=? Result S19=10450 Explanation To find S19 we use formula Sn=n2⋅(2a1+(n−1)⋅d) In this example we have a1=325 , d=25 , n=19. After substituting these values into the above equation, we obtain: Sn19=n2⋅(2a1+(n−1)⋅d)=192⋅(2⋅325+(19−1)⋅25)=192⋅(650+18⋅25)=192⋅(650+450)=192⋅1100=10450
Like you can see in the picture, I like to set up a proportion, so 81 over X and 45 over 100. Then, you can cross multiply, so 81 x 100 = 8100 and then divide, 8100 ÷ 45 = 180, your answer!