Answer:
Actually, in physical cosmology, Big Bang nucleosynthesis (or primordial nucleosynthesis) refers to the production of nuclei other than H-1, the normal, light hydrogen, during the early phases of the universe, shortly after the Big Bang. About first millisecond, the universe had cooled to a few trillion kelvins (1012 K) and quarks finally had the opportunity to bind together into free protons and neutrons. Free neutrons are unstable with a half-life of about ten minutes (614.8 s) and formed in much smaller numbers. The abundance ratio was about seven protons for every neutron. Before one neutron half-life passed nearly every neutron had paired up with a proton, and nearly every one of these pairs had paired up to form helium. By this time the universe had cooled to a few billion kelvins (109 K) and the rate of nucleosynthesis had slowed down significantly.
Explanation:
I think the answer is B - a star! Hope this helps!
<span>Investigations of the legacy of natural selection in the human genome have proved particularly informative, pinpointing functionally important regions that have participated in our genetic adaptation to the environment. Furthermore, genetic dissection of the intensity and type of selection acting on human genes can be used to predict involvement in different forms and severities of human diseases.</span>
Answer:
If you double the speed of an object, the kinetic energy increases by four times. The word "kinetic" comes from the Greek word "kinesis" which means motion. Kinetic energy can be passed from one object to another in the form of a collision.
Explanation:
The kinetic energy is proportional to the square of the speed, so doubling the speed increases the kinetic energy by a factor of 4.