Answer:
2.286 km/s²
Explanation:
Since acceleration a = (v - u)/t where u = initial horizontal velocity of ball = 0 m/s (since it starts from rest), v = final horizontal velocity of ball at serve = 73.14 m/s and t = time taken for serve = 32.0 ms = 0.032 s
Substituting the values of the variables into the equation, we have
a = (v - u)/t
a = (73.14 m/s - 0 m/s)/0.032 s
a = 73.14 m/s/0.032 s
a = 2285.625 m/s²
a = 2.285625 km/s²
a ≅ 2.286 km/s²
So, the x - component of the ball's acceleration during the serve is 2.286 km/s²
The radar device determines the vehicle's instantaneous speed.
I would argue that the purpose of the device is not to determine
whether individuals are driving safely. They only determine whether
individuals are driving within legal speed limits. There's much more
to 'safe' driving than that, but the radar gun can't detect it.
Objects should be cooled before their mass is determined on a sensitive balance because it could damage the balance. Also, because it would give you wrong reading of the mass. Hot objects would warm the air around it. A warm air would expand and would produce convection as it rises causing to give the object a mass that is less than the actual. Another reason would be it would cause instability in the readings, the mass would fluctuate every now and then due to the convection currents around the object. It is always recommended to weigh the masses of objects that are in room temperature.
Answer:
(a). The potential on the negative plate is 42.32 V.
(b). The equivalent capacitance of the two capacitors is 0.69 μF.
Explanation:
Given that,
Charge = 10.1 μC
Capacitor C₁ = 1.10 μF
Capacitor C₂ = 1.92 μF
Capacitor C₃ = 1.10 μF
Potential V₁ = 51.5 V
Let V₁ and V₂ be the potentials on the two plates of the capacitor.
(a). We need to calculate the potential on the negative plate of the 1.10 μF capacitor
Using formula of potential difference

Put the value into the formula


The potential on the second plate



(b). We need to calculate the equivalent capacitance of the two capacitors
Using formula of equivalent capacitance

Put the value into the formula



Hence, (a). The potential on the negative plate is 42.32 V.
(b). The equivalent capacitance of the two capacitors is 0.69 μF.
Explanation:
you can see this example to undersranding the question