Answer:
The z score for bolt of diameter 18.12 mm is 1.20.
Step-by-step explanation:
Let <em>X</em> = diameter of bolts.
It is provided that the random variable <em>X</em> follows a Normal distribution with mean, <em>μ</em> = 18 mm and standard deviation, <em>σ</em> = 0.10 mm.
A <em>z</em>-score is a standardized score, a numerical, that defines how far a data value from the mean.
The distribution of <em>z</em>-scores is defined by the Standard Normal distribution.

The formula to compute the <em>z</em>-score is:

The value of the diameter of a bolt is, <em>x</em> = 18.12 mm.
Compute the <em>z</em>-score for this value as follows:

Thus, the z score for bolt of diameter 18.12 mm is 1.20.
Answer:okkkkk
Step-by-step explanation:
Answer:
-1 and -4
Step-by-step explanation:
-1 + -4 = -5
-1 times -4 = 4
give brainiest please!
hope this helps ;)
Answer:
Therefore, the probability that at least half of them need to wait more than 10 minutes is <em>0.0031</em>.
Step-by-step explanation:
The formula for the probability of an exponential distribution is:
P(x < b) = 1 - e^(b/3)
Using the complement rule, we can determine the probability of a customer having to wait more than 10 minutes, by:
p = P(x > 10)
= 1 - P(x < 10)
= 1 - (1 - e^(-10/10) )
= e⁻¹
= 0.3679
The z-score is the difference in sample size and the population mean, divided by the standard deviation:
z = (p' - p) / √[p(1 - p) / n]
= (0.5 - 0.3679) / √[0.3679(1 - 0.3679) / 100)]
= 2.7393
Therefore, using the probability table, you find that the corresponding probability is:
P(p' ≥ 0.5) = P(z > 2.7393)
<em>P(p' ≥ 0.5) = 0.0031</em>
<em></em>
Therefore, the probability that at least half of them need to wait more than 10 minutes is <em>0.0031</em>.
Answer:
K of Kelvin
Step-by-step explanation: