Not sure if you’re speaking Spanish or not but yes
Solve each of the equations independently, then determine if the are continuous or discontinuous.
15≥-3x [start here]
-5≤x [divide both sides by (-3). *Dividing by a negative number means the direction of the sign changes!]
x≥-5 [just turned around for analysis]
Next equation:
2/3x≥-2 [start here]
x≥-2(3/2) [multiply both sides of the equation by the reciprocal, 3/2)
x≥-3
So, (according to the first equation) all values of x must be greater than, or equal to -5.
(According to the second equation) all values of x must be greater than, or equal to -3.
So, when graphed on a number line, both equations graph in the same direction, so they are continuous.
The zeros of given function
is – 5 and – 3
<u>Solution:</u>

We have to find the zeros of the function by rewriting the function in intercept form.
By using intercept form, we can put value of y as to obtain zeros of function
We know that, intercept form of above equation is 


Taking “x” as common from first two terms and “3” as common from last two terms
x (x + 5) + 3(x + 5) = 0
(x + 5)(x + 3) = 0
Equating to 0 we get,
x + 5 = 0 or x + 3 = 0
x = - 5 or – 3
Hence, the zeroes of the given function are – 5 and – 3
8 and 5 multiply to 40 but subtract to 3.
What figure are we looking for?