I don't get what you are asking, please elaborate?
The answer is 45 because if you divide 84 and 2 you get 42 and then add 3
From the identity:


the inverse of f is g such that f(g(x))=x,
we must find g(x), such that
![\frac{1}{cos[g(x)]}=x](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bcos%5Bg%28x%29%5D%7D%3Dx%20)
thus,
![cos[g(x)]= \frac{1}{x}](https://tex.z-dn.net/?f=cos%5Bg%28x%29%5D%3D%20%5Cfrac%7B1%7D%7Bx%7D%20)

Answer: b. g(x)=cos^-1(1/x)
Answer:
1/10
Step-by-step explanation:
1/2 divided by 5 = 1/10
Answer:
p(t) = 100%·2^(-t/1.32)
Step-by-step explanation:
The equation for exponential decay is ...
(remaining amount) = (initial amount)·2^(-t/(half-life))
Here, we can represent the percentage remaining by p(t) and the initial amount by 100%. Then, for a half-life of 1.32 minutes, the amount remaining is ...
p(t) = 100%·2^(-t/1.32) . . . . . where t is in minutes
_____
Alternate functional forms are possible, such as ...
p(t) = 100%·e^(-0.525112t)
p(t) = 100%·0.591489^t