Answer:No
Step-by-step explanation:
Given system of equation is:
2x + 3 = y
2x + y = 15
To check whether (2,7) is solution to this system or not, we will put x=2 and y=7 in both equations.
Putting x=2 and y=7 in Eqn 1
2(2) + 3 = 7
4 + 3 = 7
7 = 7
Thus the ordered pair satisfies the equation
Putting x=2 and y=7 in Eqn 2
2(2) + 7 = 15
4 + 7 = 15
11 ≠ 15
The ordered pair do not satisfy the second equation.
Hence,
(2,7) is not a solution to the given system of equations.
Answer:
x = 11.4 m
y = 21 m
man's shadow = 9.6 m
Step-by-step explanation:
measure of third angle must be 50 degrees (180 - (40 + 90))
you can take tan50° = 15/y and 'y' will equal approx. 21
to find 'x' you can take tan21° = (21-x) /25 and 21 - x = 25 · tan21°
21 - x = 9.6
-x = -11.4
x = 11.4
man's shadow is the difference of 21 and 11.4, which is 9.6
Answer:
1/8
Step-by-step explanation:
Step-by-step explanation:
1. (2+4+1)/9 = 7/9
2. 2 1/3 + 2/3 = 2 + (1+2)/3 = 2 + 3/3 = 2+1 = 3
3. 1 1/5 + 2 3/5 = 1+2 + 1/5 + 3/5 = 3 + (1+3)/5 =
3 4/5
4. 5/6 + 2/10 + 1/5 = 5/6 + 1/5 + 1/5 = 5/6 + 2/5
= (5×5)/(6×5) + (2×6)/(5×6)
= 25/30 + 12/30
= (25+12)/30
= 37/30 = 1 7/30
5. 3 1/2 + 4 2/3
= 3+4 + 1/2 + 2/3
= 7 + (1×3)/(2×3) + (2×2)/(3×2)
= 7 + 3/6 + 4/6
= 7 + (3+4)/6 = 7 7/6 = 8 1/6
6. 9/13 - 5/13 = (9-5)/13 = 4/13
7. 7 6/8 - 5 2/8
= (7-5) + (6/8 - 2/8)
= 2 + 4/8
= 2 1/2
8. 2/3 - 3/7
= (2×7)/(3×7) - (3×3)/(7×3)
= 14/21 - 9/21 = (14-9)/21 = 5/21
9. 11 1/5 - 5 4/5
= 10 6/5 - 5 4/5
= (10-5) + (6/5 - 4/5)
= 5 + 2/5 = 5 2/5
10. 15 4/5 - 7 7/10
= (15-7) + (4/5 - 7/10)
= 8 + (4×2)/(5×2) - 7/10
= 8 + 8/10 - 7/10
= 8 + 1/10
= 8 1/10
Answer:
When we have a rotation about a given point, the distance between the rotated point and the axis of rotation will remain constant, the only thing that changes is the coordinates of the point.
This tell us that the main measures of any rotated shape will not change.
Then the side lengths will remain constant, this implies that the area also remains constant, and this also means that the angle measures should remain the same.
And because the perimeter is equal to the sum of all the side lengths, the perimeter also remains the same.
The only thing that changes will be the coordinates of our polygon.