Answer:
Approximately
, assuming that the rocket had no propulsion onboard, and that air resistance on the rocket is negligible.
Explanation:
Initial velocity of this rocket:
.
When the rocket is at its maximum height, the velocity of the rocket would be equal to
. That is:
.
The acceleration of the rocket (because of gravity) is constantly downwards, with a value of
.
Let
denote the distance that the rocket travelled from the launch site to the place where it attained maximum height. The following equation would relate
to
,
, and
:
.
Apply this equation to find the value of
:
.
In other words, the maximum height that this rocket attained would be
.
Again, assume that the air resistance on this rocket is negligible. The rocket would return to the ground along the same path, and would cover a total distance of
.
Answer:
8.60 g/cm³
Explanation:
In the lattice structure of iron, there are two atoms per unit cell. So:
where
an and A is the atomic mass of iron.
Therefore:

This implies that:

= 
Assuming that there is no phase change gives:

= 8.60 g/m³
Answer:
0.3 %
Explanation:
Earth cleans and replenishes the water supply through the hydrologic cycle. The earth has an abundance of water, but unfortunately, only a small percentage, is even usable by people.
Answer:
The Principle of Progression
(I searched it up since I never learned this)
Explanation:
The principle of progression states that a person should start slowly and increase exercise gradually. Since Mandy is just getting started on her exercise routine, she should begin with a few workouts over a large span of time, then work her way up so she can do more workouts in a shorter span of time.
The increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Kinetic energy of a particle is directly proportional to its temperature.
A ball initially at rest acquires kinetic energy when an external force is applied to it. As the person strikes the ball with a bat, the ball gains momentum which increases its kinetic energy of the ball.
Temperature on the other hand, is the measure of the average kinetic energy of a particle. Consequently, as the kinetic energy of the ball increases, the temperature of the ball increases as well.
Thus, we can conclude that the increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Learn more here: brainly.com/question/18833622