Add then divide the hint clearly backs it up two so yeahh
C. Thick wire and cold temperature.
Explanation:
The resistance of a wire is given by: R = (ρL)/A
where ρ is the resistivity of the material, L is the length of the wire, A is the cross-sectional area of the wire.
From the formula, we see that the thicker the wire, the larger A, therefore the smaller the resistivity. so, a thick wire will have lower resistivity.
Moreover, the resistance of a wire increases with the temperature. In fact, high temperatures mean more motion of the atoms/electrons inside the wire, so more resistance to the flow of current through it. Therefore, colder temperature means lower resistance.
So, the correct option is thick wire and cold temperature.
The definition of matter is physical substance in general, as distinct from mind and spirit that which occupies space and possesses rest mass, especially as distinct from energy, which basically means that matter makes up the whole Earth and everything on it. <span />
Answer:
The natural medium emanating from the Sun and other very hot sources (now recognised as electromagnetic radiation with a wavelength of 400-750 nm), within which vision is possible.
Explanation:
just the way it is
The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
To find the answer, we need to know about the thermodynamic processes.
<h3>How to find the final temperature of the gas?</h3>
- Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
- In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
- The membrane is raptured without applying any external force, thus, dW=0.
- We have the first law of thermodynamic expression as,

,

- Thus, the final temperature of the system will be equal to the initial temperature,

<h3>How much work is done?</h3>
- We found that the process is isothermal,
- Thus, the work done will be,

Where, R is the universal gas constant.
<h3>What is a reversible process?</h3>
- Any process which can be made to proceed in the reverse direction is called reversible process.
- During which, the system passes through exactly the same states as in the direct process.
Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
Learn more about thermodynamic processes here:
brainly.com/question/28067625
#SPJ1