Its the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System.
The magnetic field at the center of the arc is 4 × 10^(-4) T.
To find the answer, we need to know about the magnetic field due to a circular arc.
<h3>What's the mathematical expression of magnetic field at the center of a circular arc?</h3>
- According to Biot savert's law, magnetic field at the center of a circular arc is
- B=(μ₀ I/4π)× (arc/radius²)
- As arc is given as angle × radius, so
B=( μ₀I/4π)×(angle/radius)
<h3>What will be the magnetic field at the center of a circular arc, if the arc has current 26.9 A, radius 0.6 cm and angle 0.9 radian?</h3>
B=(μ₀ I/4π)× (0.9/0.006)
= (10^(-7)× 26.9)× (0.9/0.006)
= 4 × 10^(-4) T
Thus, we can conclude that the magnitude of magnetic field at the center of the circular arc is 4 × 10^(-4) T.
Learn more about the magnetic field of a circular arc here:
brainly.com/question/15259752
#SPJ4
The force required is 319 N
Explanation:
The force of static friction is a force that acts an object on a surface, when this object is pushed by another force to put it in motion. The direction of the force of friction is opposite to the direction of the force of push, and its value increases as the force of push increases, up to a maximum value given by:

where
is the coefficient of friction
W is the weight of the object
Therefore, in order to put the object in motion, the force applied must be greater than this value.
For the pile of leaves in this problem, we have:
(coefficient of friction)
(weight of the leaves)
Substituting, we find:

Learn more about force of friction:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly
Answer:
3.9 seconds
Explanation:
Use constant acceleration equation:
y = y₀ + v₀ t + ½ at²
where y is the final position,
y₀ is the initial position,
v₀ is the initial velocity,
a is the acceleration,
and t is time.
Given:
y = 0 m
y₀ = 15 m
v₀ = 15 m/s
a = -9.8 m/s²
Substituting values:
0 = 15 + 15t + ½ (-9.8) t²
0 = 15 + 15t − 4.9t²
0 = 4.9t² − 15t − 15
Solve with quadratic formula:
t = [ -b ± √(b² − 4ac) ] / 2a
t = [ 15 ± √((-15)² − 4(4.9)(-15)) ] / 2(4.9)
t = [ 15 ± √(225 + 294) ] / 9.8
t = (15 ± √519) / 9.8
t = -0.79 or 3.9
It takes 3.9 seconds for the stone to reach the bottom of the well.
The negative answer is the time it takes the stone to travel from the bottom of the well up to the top of the well.