Answer:
Part a)
tex]V = -1 \times 10^8 Volts[/tex]
Part b)

Part c)

Explanation:
Part a)
Net charge distribution on each shell is given as
On surface of radius "a"

on radius "b"

on radius "c"

Now potential at the outer shell is



Part b)
Since copper sphere is a conducting sphere so here it will be an equi potential surface
So the potential will remain same throughout the surface of this sphere
Now we can say

Part c)
Now electric potential at inner sphere is given as



Answer:
F = m a = m v / t where v is the change in velocity in time t
F = p / t since m v is equal to p
F = 2.2 (kg m / s) / 1.1 s = 2 kg-m / s^2 = 2 N
Or you can use the impulse equation
Answer:
ytrxrddyoxswsdyxgxghfx
jdjdu3jthh
hhhujusbrnog
hhjfjtinrny
ykrjrhrnirjtjjtt
tkrjthr74uu3jt
hri4urjjrjtjjtjtjy
y
Explanation:
uueuhhhwuejroskanficndui39wn
jebfufkr
I’ve answered this problem before and there were 2 parts in
this problem.
The solution would be like this for this specific problem:
<span>A.
</span><span>Vf = Vi +
Vex*ln(Mi / Mf) </span><span>
<span>0.002 * 3e8m/s = 0 + 2000m/s * ln(Mi / Mf) </span>
<span>300 = ln(Mi / Mf) </span>
<span>1.9e130 = Mi / Mf </span></span>
<span>B.
</span><span>4000m/s =
2000m/s * ln(Mi / Mf) </span><span>
<span>2 = ln(Mi / Mf) </span>
<span>7.389 = Mi / Mf </span>
<span>Mf = Mi / 7.389 = 0.135*Mi<span> </span></span></span>
Answer:
- there is an equal and opposite force
- moving
Explanation:
When balanced forces act on an <em>object at rest</em>, the object will not move. If you push against a wall, the wall pushes back with an equal but opposite force. Neither you nor the wall will move. Forces that cause a change in the motion of an object are unbalanced forces.