The temperature increase of a substance is T=Q/m*c, where m is the mass, Q is the energy absorbed and c is the specific heat. So you can conclude that if the lead gets to a higher temperature, it must have a lower specific heat
The answer is believed to be C because the evidence is from fossils and glaciers.
I dont know what the statements are but concave lens are thinner in the middle which cause light to diverge or scatter
For the answer to this question,
Thalia must consider the weight of the object and the mass of the sculpture. Weight and mass are different things. She should also consider the time on how long it will take to move it and where she'll move it.
Answer:

Explanation:
The horizontal distance covered by the ball in the falling is only determined by its horizontal motion - in fact, it is given by

where
is the horizontal velocity
t is the time of flight
The time of flight, instead, is only determined by the vertical motion of the ball: however, in this problem the vertical velocity is not changed (it is zero in both cases), so the time of flight remains the same.
In the first situation, the horizontal distance covered is

in the second case, the horizontal velocity is increased to

And so the new distance travelled will be

So, the distance increases linearly with the horizontal velocity.