I think it might be A. i am not totally sure though
<u>Given:</u>
Mass of H2O2 solution = 5.02 g
Mass of H2O2 = 0.153 g
<u>To determine: </u>
The % H2O2 in solution
<u>Explanation:</u>
Chemical reaction-
2H2O2(l) → 2H2O(l) + O2(g)
Mass % of a substance in a solution = (Mass of the substance/Mass of solution) * 100
In this case
% H2O2 = (Mass H2O2/Mass of solution)* 100 = (0.153/5.02)*100 = 3.05%
Ans: % H2O2 in the solution = 3.05%
Answer:
the molecules of water contracts when it is frozen
Answer: An atom that has gained an electron.
Explanation:
The number of protons in an atom cannot change except for some exceptional circumstances.
Cations (or metal ions) are formed when atoms lose electrons, as they want to form a complete outer electron shell to become as stable as possible.
For example, potassium is a 1+ ion, because it has one electron in its outer shell (and in group one). Therefore, to become more stable that electron is lost to become an ion or cation. As one electron is lost, the potassium cation charge is 1+ as the charge of an electron is 1-.
Answer:
m = 0.531 molal
Explanation:
∴ m fructose = 3.35 g
∴ V water = 35.0 mL
∴ ρ H2O = 1 g/mL
- molality = moles solute / Kg solvent
∴ Mw fructose = 180.16 g/mol
⇒ moles fructose = 3.35 g * ( mol / 180.16 g) = 0.0186 mol fructose
⇒ m H2O = 35.0 mL * ( 1 g/mL ) * ( Kg/1000g) = 0.035 Kg H2O
⇒ molality (m) = 0.0186 mol fructose / 0.035 Kg H2O
⇒ m = 0.531 molal