Answer:
By presenting the results in a poster session.
Explanation:
Several scientists from different countries are asked to examine the results of an experiment before a journal will print it.
Answer: A balanced equation is an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total charge is the same for both the reactants and the products
Answer:
the rate of heat transfer is directly proportional to the mass flow rate.
Explanation:
There is an elementary equation from basic thermodynamics that states that the rate of heat transfer (Q) equals the mass flow rate (M) times a Constant (the specific heat of water) times the Delta T (fluid temp out minus fluid temp in): Q = M x C x Delta T In other words, the rate of heat transfer is directly proportional to the mass flow rate.
The specific heat<span> is the amount of </span>heat<span> per unit mass required to raise the temperature by one degree Celsius. Therefore, a high value of specific heat would mean that more heat is needed in order for the temperature to increase. The correct answer would be water since it has the highest specific heat of the choices given.</span>
Answer:
Explanation:
<u>1. Chemical quation</u>
The reaction of aluminium, sodium hydroxide and water is represented by the balanced chemical equation:
- 2Al(s) + 2NaOH(s) + 6H₂O(l) → 2Na[Al(OH)₄] (aq) + 3H₂(g) ↑
The coefficients of each reactant and product give the theoretical mole ratios.
To find the limiting reactant you compare the theoretical ratios with the ratio of the available substaces.
<u>2. Theoretical mole ratio:</u>
- 2 mol Al : 2 mol NaOH : 6 mol H₂O
Equivalent to
- 1 mol Al : 1 mol NaOH : 3 mol H₂O
<u>3. Actual ratio</u>
a) Convert each mass to number of moles
Formula:
- number of moles = mass in grams / molar mass
Al:
- molar mass = atomic mass = 26.982g/mol
- number of moles = 51.0g / 26.982g/mol = 1.89 mol
NaOH:
- number of moles = 84.1g / 39.997g/mol = 2.10 mol
H₂O:
- number of moles = 25.0g / 18.015g/mol = 1.39 mol
Divide all the mole amounts by the least number:
- Al: 1.89/1.39 = 1.36
- NaOH: 2.10 = 1.52
- H₂O: 1.39 = 1.00
- 1.36 mol Al : 1.52 mol NaOH : 1.00 mol H₂O
<u>4. Comparison</u>
<u />
Theoretical ratio:
- 1 mol Al : 1 mol NaOH : 3 mol H₂O
Actual ratio:
- 1.36 mol Al : 1.52 mol NaOH : 1.00 mol H₂O
Multiply by 3:
- 4.08 mol Al : 4.56 mol NaOH : 3.00 mol H₂O
Now, yo can see that the first two are in excess with respect the third one, making that the water consumes first, before any of the other two consumes. Therefore, the limiting reactant is the water.