According to the law of conservation of mass, the mass of reactants will be equal to the mass of the products. The mass of products and reactants will only differ during a nuckear reaction
Changing of the physical state of water is not a nuclear reaction. So becoz of that the mass will remain constant without any change.
Answer:
Compound
Explanation:
-compound is a chemical substance composed of many identical molecules composed of atoms from more than one element held together by chemical bonds.
Answer:
10.32 moles of ammonia NH₃
Explanation:
From the question given above, the following data were obtained:
Number of molecules = 6.21×10²⁴ molecules
Number of mole of NH₃ =?
The number of mole of NH₃ can be obtained as follow:
From Avogadro's hypothesis,
6.02×10²³ molecules = 1 mole
Therefore,
6.21×10²⁴ molecules = 6.21×10²⁴ / 6.02×10²³
6.21×10²⁴ molecules = 10.32 moles
Thus, 6.21×10²⁴ molecules contains 10.32 moles of ammonia NH₃
Answer:
, zirconium-103.
Explanation:
In a nuclear reaction, both the mass number and atomic number will conserve.
Let
represent the unknown particle.
The mass number of a particle is the number on the upper-left corner. The atomic number of a particle is the number on its lower-left corner under the mass number. For example, for the particle
,
is the mass number while
while
is the atomic number.
Sum of mass numbers on the left-hand side of the equation:
.
Note that there are three neutrons on the right-hand side of the equation. Sum of mass numbers on the right-hand side:
.
Mass number conserves. As a result,
.
Solve this equation for
:
.
Among the five choices, the only particle with a mass number of 103 is
. Make sure that atomic number also conserves.