Answer:
Explanation:
We can only talk about resonance hybrid for a compound in which more than one structure is possible based on its observed chemical properties.
There are compounds whose chemical properties can not be satisfactorily explained on the basis of a single chemical structure. In the case of such compounds, we invoke the idea of resonance.
A resonance hybrid is a single structure drawn to represent a given chemical specie which exhibits resonance behaviour and can otherwise be represented on paper in the form of an average of two or more chemical structures separated each from the next by a double-headed arrow.
Answer:
Density: The molecules of a liquid are packed relatively close together. Consequently, liquids are much denser than gases. The density of a liquid is typically about the same as the density of the solid state of the substance.
In a gas, the distance between molecules, whether monatomic or polyatomic, is very large compared with the size of the molecules; thus gases have a low density and are highly compressible. In contrast, the molecules in liquids are very close together, with essentially no empty space between them
I hope it helps you
Answer:
Explanation:
When a salt is dissolved , it increases the boiling point . Increase in boiling point depends upon number of ions . So it is a colligative property .
.19 m AgNO₃ . Each molecule will ionize into two ions . So effective molar concentration is 0.19 x 2 = .38 m
0.17 m CrSO4.Each molecule will ionize into two ions . So effective molar concentration is 0.17 x 2 = .34 m
0.13 m Mn(NO₃)₂. Each molecule will ionize into three ions . So effective molar concentration is 0.13 x 3 = .39 m
0.31 m Sucrose(nonelectrolyte). Molecules will not ionize . So effective molar concentration is 0.31 x 1 = .31 m
Higher the molar concentration , greater the depression in boiling point .
So lowest boiling point is 0.13 m Mn(NO₃)₂.
second highest boiling point is 0.19 m AgNO3.
Third lowest boiling point is 0.17 m CrSO4
Highest boiling point or lowest depression 0.31 m Sucrose.
a . 4
b . 1
c . 2
d . 3
Answer:
C) Temperature and Kinetic Energy.
Explanation:
Hello there!
In this case, according to the generic heating curve on the attached file, it possible to see that on the point C, whereas the line is diagonal, the temperature increases, but also the kinetic energy increases because the molecules gain energy due to the increase of the temperature. It is important to say that on flat lines, like those on B and D, the phase change takes place and just the potential energy change.
In such a way, we infer that the answer is C) Temperature and Kinetic Energy.
Best regards!
Answer:
There will not be any ejection of photoelectrons
Explanation:
Energy of the photon= hc/λ
Where;
h= Plank's constant
c= speed of light
λ= wavelength of the incident photon
E= 6.6×10^-34 × 3 ×10^8/488 × 10^-9
E= 4.1 ×10^-19 J
Work function of the metal (Wo)= 2.9 eV × 1.6 × 10^-19 = 4.64 × 10^-19 J
There can only be ejected photoelectrons when E>Wo but in this case, E<Wo hence there will not be any ejection of photoelectrons.