Methanol or <span>methyl alcohol</span>
According to Newtons second law of motion:

This shows, acceleration and mass are inversely proportional. So, larger the mass, less will be the acceleration produced and vice versa.
In case of a sports car and a fully loaded truck, the mass of truck is a lot more than the sports car. As a result the sports car will accelerate faster when the traffic light turns green.
Answer:
Kc = 3.94
Explanation:
CH₃COOH(g) + C₂H₅OH(g) → CH₃COOC₂H₅(g) + H₂O(g)
Liquids aren't included in the equilibrium constant, but at 100°C, all four compounds are a gas. So the equilibrium equation is:
Kc = [CH₃COOC₂H₅] [H₂O] / ([CH₃COOH] [C₂H₅OH])
Set up an ICE table for each row and calculate the value of Kc. Then average the results. (See picture.)
Kc ≈ (3.919 + 4.012 + 3.902) / 3
Kc ≈ 3.94
Answer:
a) The work done is 10.0777 kJ
b) The water's change in internal energy is -122.1973 kJ
Explanation:
Given data:
1 mol of liquid water
T₁ = temperature = 100.9°C
P = pressure = 1 atm
Endothermic reaction
T₂ = temperature = 100°C
1 mol of water vapor
VL = volume of liquid water = 18.8 mL = 0.0188 L
VG = volume of water vapor = 30.62 L
3.25 moles of liquid water vaporizes
Q = heat added to the system = -40.7 kJ
Questions: a) Calculate the work done on or by the system, W = ?
b) Calculate the water's change in internal energy, ΔU = ?
Heat for 3.25 moles:

The work done:

The change in internal energy:

<h2>Answer:</h2>
The density of mercury molecule is higher than water.
<h3>Explanation:</h3>
Density is defined as mass per unit volume.In other words, density is the amount of matter within a given amount of space. water has the density of 1.0 gram per milliliter whereas the mercury has a density of 13.6 grams per centimeter squared.
One reason for the differences in density between mercury and water is that the atomic mass of mercury is 200.59 grams per mole. The atomic mass of water is 18.0 grams per mole. This is because mercury has a larger nucleus than hydrogen or water.
Additionally, there are strong inter-molecular forces (hydrogen bonds) between water molecules. hydrogen molecules do not stack upon one another as nicely as mercury atoms. Thus, there is additional empty spaces between the water molecules leading to its lower mass per volume(density)