The force of gravity on the object is 14.47 N
Explanation:
The weight of an object (which is the force of gravity experienced by an object) at a certain location is given by

where
m is the mass of the object
g is the acceleration of gravity at the location of the object
IN this problem, we have:
m = 24.52 kg (mass of the object)
(acceleration of gravity on Pluto)
Substituting, we find the force of gravity on the object:

Learn more about forces and weight:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Car at rest:
velocity= 0m/s
Acceleration:
0.2m/s²
Since total time:
3 min = 180s
Formula of acceleration:
acceleration = [final velocity - initial velocity] ÷ [total time]
Velocity at end:
0.2m/s² = [final velocity - 0m/s] ÷ [180s]
0.2m/s² × 180s = [final velocity]
[final velocity] = 36m/s
Distance travelled:
Velocity = displacement(distance) ÷ time
36m/s = displacement(distance) ÷ 180s
displacement(distance) = 36m/s × 180s
displacement(distance) = 6480m
<em><u>Hey I'm sorry but i do not understand why the answer on your worksheet for distance travelled is 3240m... its </u></em><em><u>half</u></em><em><u> of what my answer is...</u></em>
<span>Newton's Third Law of Action-Reaction is that for each and every action that happens, there is an equal and opposite reaction to it. In the scenario of a roller coaster, this is when you push down on the seat of the roller coaster as it flies along and the seat pushes back against you.</span>
The magnitude of the net displacement is 95.3 m
Explanation:
To find the magnitude of the net displacement, we have to resolve each of the two displacements into the horizontal and vertical direction first.
1st displacement is:
at 
So its components are

2nd displacement is:
at 
So its components are

Therefore, the x- and y-components of the net displacement are:

Therefore, the magnitude of the final displacement is:

Learn more about displacement:
brainly.com/question/3969582
#LearnwithBrainly
[r] =6
Solve for r by simplifying both sides of the equation, then isolating the variable.
<em> </em>I hope this makes sense