Melting ice would damage this polar bears habitat meaning the polar bear may decrease
Answer:
Speed will be equal to 1.40 m/sec
Explanation:
Mass of the rubber ball m = 5.24 kg = 0.00524 kg
Spring is compressed by 5.01 cm
So x = 5.01 cm = 0.0501 m
Spring constant k = 8.08 N/m
Frictional force f = 0.031 N
Distance moved by ball d = 15.8 cm = 0.158 m
Energy gained by spring
Energy lost due to friction
So remained energy to move the ball = 0.0101 - 0.0048 = 0.0052 J
This energy will be kinetic energy
v = 1.40 m/sec
Answer:
I think the awnser is B (but don't qoute me on that) if its right then yay but if its wrong im sorry
Explanation:
Answer:
Explanation:
First we have to find the time required for train to travel 60 meters and impact the car, this is an uniform linear motion:
The reaction time of the driver before starting to accelerate was 0.50 seconds. So, remaining time for driver is 1.5 seconds.
Now, we have to calculate the distance traveled for the driver in this 0.5 seconds before he start to accelerate. Again, is an uniform linear motion:
The driver cover 10 meters in this 0.5 seconds. So, the remaining distance to be cover in 1.5 seconds by the driver are 35 meters. We calculate the minimum acceleration required by the car in order to cross the tracks before the train arrive, Since this is an uniformly accelerated motion, we use the following equation:
The momentum of the
x-ray photon is p = h/lambda . Lambda is the wavelength (0.30nm=3x10^(-9)m) and
h is Planck's constant,(h=6.62607004 × 10-34<span> m2 kg / s).The
momentum is: 2.2 x 10^(-25).</span>
The momentum can be calculated
also as: p=mv, where m is the mass of the electron and v is the speed.
So v=p/m,p is known,and
also the mass of the electron (m=9.10938356 × 10-31<span> kilograms).</span>
v=2.2 x 10^(-25)/9.10938356
× 10-31<span> kilograms=0.24 x 10^6 m/s</span>