Answer: 75V
Explanation:
Given that,
total resistance (Rtotal) = 150Ω
Current (I) = 0.5A
Change in electric potential (V) = ?
Recall that potential difference is the product of amount of current and the amount of resistance in the circuit. And its unit is volts.
So, apply the formula V = I x Rtotal
V = 0.5A x 150Ω
V = 75V
Thus, the change in electric potential across the circuit is 75 Volts
Answer:
Neither.
Explanation:
When an electron is released from rest, in an uniform electric field, it will accelerate moving in a direction opposite to the field (as the field has the direction that it would take a positive test charge, and the electron carries a negative charge).
It will move towards a point with a higher potential, so its kinetic energy will increase, while its potential energy will decrease:
⇒ ΔK + ΔU = 0 ⇒ ΔK = -ΔU = - (-e*ΔV)
As ΔV>0, we conclude that the electric potential energy decreases while the kinetic energy increases in the same proportion, in order to energy be conserved, in absence of non-conservative forces.
There’s no picture so how r we supposed to answer it
Answer
given,
gauge pressure = 1.94 x 10⁵ Pa
Pressure due to 4.90 m column of water
= ρ g h
= (4.90) x (1000) x (9.8) Pa
= 48020 Pa
Gauge pressure of second floor faucet
= 1.94 x 10⁵Pa - 48020 Pa
P_g= 145980 Pa
( b )
Let h = height of faucet from which no water can flow even if open
P = ρ g h
1.94 x 10⁵ = h x(1000) x (9.8)
h = 19.79 m
Answer:
5558643.69 N
Explanation:
F = Force
v = Velocity = 31.5 knots
Converting to m/s


Power is given by

The forward force is exerted on the ship at this highest attainable speed is 5558643.69 N