1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goshia [24]
3 years ago
9

True or false , if acceleration is negative speed is decreasing

Physics
1 answer:
laiz [17]3 years ago
3 0
Personally based on my knowledge of physics I believe this is true
You might be interested in
What structure help support plants
natka813 [3]
The cell structure that helps support plants is the cell wall. It provides a shell structure around the main cell of the plant and its layers so then it will have the adequate amount of strength that it needs. It's also one of the reasons why even non-woody plants such as herbs have the strength of support itself. 
4 0
3 years ago
Read 2 more answers
What is an electric circuit?
klemol [59]

<h3>Answer: any path that allows electrons to flow</h3>

An electrical circuit is a path in which electrons from a voltage or current source flow. ... The part of an electrical circuit that is between the electrons' starting point and the point where they return to the source is called an electrical circuit's "load".

7 0
3 years ago
Read 2 more answers
50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t
r-ruslan [8.4K]

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
You drop a ball from a height of 2.0 m, and it bounces back to a height of 1.5 m. a) What fraction of its initial energy is lost
tangare [24]
The fraction of energy that is lost is 25%, it depends how fast the ball was going until it lost 25% of its energy, the gravitational energy was transferred into the kinetic energy that helped the ball bounce back
4 0
3 years ago
A particular balloon can be stretched to a maximum surface area of 1257 cm2. The balloon is filled with 3.1 L of helium gas at a
chubhunter [2.5K]

Answer:

The ballon will brust at

<em>Pmax = 518 Torr ≈ 0.687 Atm </em>

<em />

<em />

Explanation:

Hello!

To solve this problem we are going to use the ideal gass law

PV = nRT

Where n (number of moles) and R are constants (in the present case)

Therefore, we can relate to thermodynamic states with their respective pressure, volume and temperature.

\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2} --- (*)

Our initial state is:

P1 = 754 torr

V1 = 3.1 L

T1 = 294 K

If we consider the final state at which the ballon will explode, then:

P2 = Pmax

V2 = Vmax

T2 = 273 K

We also know that the maximum surface area is: 1257 cm^2

If we consider a spherical ballon, we can obtain the maximum radius:

R_{max} = \sqrt{\frac{A_{max}}{4 \pi}}

Rmax = 10.001 cm

Therefore, the max volume will be:

V_{max} = \frac{4}{3} \pi R_{max}^3

Vmax = 4 190.05 cm^3 = 4.19 L

Now, from (*)

P_{max} = P_1 \frac{V_1T_2}{V_2T_1}

Therefore:

Pmax= P1 * (0.687)

That is:

Pmax = 518 Torr

6 0
3 years ago
Other questions:
  • Which of the following minerals maintains healthy fluid balance?
    13·2 answers
  • You can determine the index of refraction of a substance by determining its critical angle. (a) What is the index of refraction
    13·1 answer
  • A phoneme is the largest unit of sound in a word. TRUE or FALSE.
    11·2 answers
  • Light of wavelength 600 nm passes though two slits separated by 0.25 mm and is observed on a screen 1.4 m behind the slits. The
    8·2 answers
  • A student sorted mineral samples into two groups: dull and shiny. Which of the following properties did the student use to sort
    6·2 answers
  • The Lamborghini Huracan has an initial acceleration of 0.80g. Its mass, with a driver, is 1510 kg. If an 80 kg passenger rode al
    8·1 answer
  • The scale is called an absolute temperature scale, and it's zero point is called absolute sero
    7·1 answer
  • Sliding friction is _ than the static friction.
    9·1 answer
  • What causes the apparent motions of stars across the sky each night
    7·1 answer
  • The gravitational force, Fbetween an object and the Earth is inversely proportional to the square of the distance from the objec
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!